On spectral flow symmetry and Knizhnik-Zamolodchikov equation

Autores
Giribet, Gastón Enrique
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
It is well known that five-point function in Liouville field theory provides a representation of solutions of the SL (2, R) k Knizhnik–Zamolodchikov equation at the level of four-point function. Here, we make use of such representation to study some aspects of the spectral flow symmetry of sl ˆ (2) k affine algebra and its action on the observables of the WZNW theory. To illustrate the usefulness of this method we rederive the three-point function that violates the winding number in SL (2, R) in a very succinct way. In addition, we prove several identities holding between exact solutions of the Knizhnik–Zamolodchikov equation.
Instituto de Física La Plata
Materia
Física
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/129629

id SEDICI_689df49fcf141a4babdb8707b4ef4dbd
oai_identifier_str oai:sedici.unlp.edu.ar:10915/129629
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling On spectral flow symmetry and Knizhnik-Zamolodchikov equationGiribet, Gastón EnriqueFísicaIt is well known that five-point function in Liouville field theory provides a representation of solutions of the SL (2, R) k Knizhnik–Zamolodchikov equation at the level of four-point function. Here, we make use of such representation to study some aspects of the spectral flow symmetry of sl ˆ (2) k affine algebra and its action on the observables of the WZNW theory. To illustrate the usefulness of this method we rederive the three-point function that violates the winding number in SL (2, R) in a very succinct way. In addition, we prove several identities holding between exact solutions of the Knizhnik–Zamolodchikov equation.Instituto de Física La Plata2005info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf148-156http://sedici.unlp.edu.ar/handle/10915/129629enginfo:eu-repo/semantics/altIdentifier/issn/0370-2693info:eu-repo/semantics/altIdentifier/arxiv/hep-th/0508019info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physletb.2005.09.031info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:23:08Zoai:sedici.unlp.edu.ar:10915/129629Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:23:08.962SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv On spectral flow symmetry and Knizhnik-Zamolodchikov equation
title On spectral flow symmetry and Knizhnik-Zamolodchikov equation
spellingShingle On spectral flow symmetry and Knizhnik-Zamolodchikov equation
Giribet, Gastón Enrique
Física
title_short On spectral flow symmetry and Knizhnik-Zamolodchikov equation
title_full On spectral flow symmetry and Knizhnik-Zamolodchikov equation
title_fullStr On spectral flow symmetry and Knizhnik-Zamolodchikov equation
title_full_unstemmed On spectral flow symmetry and Knizhnik-Zamolodchikov equation
title_sort On spectral flow symmetry and Knizhnik-Zamolodchikov equation
dc.creator.none.fl_str_mv Giribet, Gastón Enrique
author Giribet, Gastón Enrique
author_facet Giribet, Gastón Enrique
author_role author
dc.subject.none.fl_str_mv Física
topic Física
dc.description.none.fl_txt_mv It is well known that five-point function in Liouville field theory provides a representation of solutions of the SL (2, R) k Knizhnik–Zamolodchikov equation at the level of four-point function. Here, we make use of such representation to study some aspects of the spectral flow symmetry of sl ˆ (2) k affine algebra and its action on the observables of the WZNW theory. To illustrate the usefulness of this method we rederive the three-point function that violates the winding number in SL (2, R) in a very succinct way. In addition, we prove several identities holding between exact solutions of the Knizhnik–Zamolodchikov equation.
Instituto de Física La Plata
description It is well known that five-point function in Liouville field theory provides a representation of solutions of the SL (2, R) k Knizhnik–Zamolodchikov equation at the level of four-point function. Here, we make use of such representation to study some aspects of the spectral flow symmetry of sl ˆ (2) k affine algebra and its action on the observables of the WZNW theory. To illustrate the usefulness of this method we rederive the three-point function that violates the winding number in SL (2, R) in a very succinct way. In addition, we prove several identities holding between exact solutions of the Knizhnik–Zamolodchikov equation.
publishDate 2005
dc.date.none.fl_str_mv 2005
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/129629
url http://sedici.unlp.edu.ar/handle/10915/129629
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0370-2693
info:eu-repo/semantics/altIdentifier/arxiv/hep-th/0508019
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physletb.2005.09.031
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
148-156
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064286740250624
score 13.22299