The ideal of p-compact operators: a tensor product approach

Autores
Galicer, Daniel Eric; Lassalle, Silvia Beatriz; Turco, Pablo Alejandro
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the space of p-compact operators, Kp, using the theory of tensor norms and operator ideals. We prove that Kp is associated to /dp, the left injective associate of the Chevet-Saphar tensor norm dp (which is equal to g' p' ). This allows us to relate the theory of p-summing operators to that of p-compact operators. Using the results known for the former class and appropriate hypotheses on E and F we prove that K p(E; F) is equal to Kq(E; F) for a wide range of values of p and q, and show that our results are sharp. We also exhibit several structural properties of Kp. For instance, we show that Kp is regular, surjective, and totally accessible, and we characterize its maximal hull Kmax p as the dual ideal of p-summing operators, Πdual p . Furthermore, we prove that Kp coincides isometrically with QNdual p , the dual to the ideal of the quasi p-nuclear operators.
Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Lassalle, Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Turco, Pablo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
ABSOLUTELY P-SUMMING OPERATORS
APPROXIMATION PROPERTIES
P-COMPACT OPERATORS
QUASI P-NUCLEAR OPERATORS
TENSOR NORMS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/151173

id CONICETDig_0e65c084c2605272fea3cb39c146db8f
oai_identifier_str oai:ri.conicet.gov.ar:11336/151173
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The ideal of p-compact operators: a tensor product approachGalicer, Daniel EricLassalle, Silvia BeatrizTurco, Pablo AlejandroABSOLUTELY P-SUMMING OPERATORSAPPROXIMATION PROPERTIESP-COMPACT OPERATORSQUASI P-NUCLEAR OPERATORSTENSOR NORMShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the space of p-compact operators, Kp, using the theory of tensor norms and operator ideals. We prove that Kp is associated to /dp, the left injective associate of the Chevet-Saphar tensor norm dp (which is equal to g' p' ). This allows us to relate the theory of p-summing operators to that of p-compact operators. Using the results known for the former class and appropriate hypotheses on E and F we prove that K p(E; F) is equal to Kq(E; F) for a wide range of values of p and q, and show that our results are sharp. We also exhibit several structural properties of Kp. For instance, we show that Kp is regular, surjective, and totally accessible, and we characterize its maximal hull Kmax p as the dual ideal of p-summing operators, Πdual p . Furthermore, we prove that Kp coincides isometrically with QNdual p , the dual to the ideal of the quasi p-nuclear operators.Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Lassalle, Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Turco, Pablo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaPolish Academy of Sciences. Institute of Mathematics2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/151173Galicer, Daniel Eric; Lassalle, Silvia Beatriz; Turco, Pablo Alejandro; The ideal of p-compact operators: a tensor product approach; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 211; 3; 12-2012; 269-2860039-3223CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://journals.impan.pl/cgi-bin/doi?sm211-3-8info:eu-repo/semantics/altIdentifier/doi/10.4064/sm211-3-8info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1110.3251info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:23:05Zoai:ri.conicet.gov.ar:11336/151173instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:23:05.559CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The ideal of p-compact operators: a tensor product approach
title The ideal of p-compact operators: a tensor product approach
spellingShingle The ideal of p-compact operators: a tensor product approach
Galicer, Daniel Eric
ABSOLUTELY P-SUMMING OPERATORS
APPROXIMATION PROPERTIES
P-COMPACT OPERATORS
QUASI P-NUCLEAR OPERATORS
TENSOR NORMS
title_short The ideal of p-compact operators: a tensor product approach
title_full The ideal of p-compact operators: a tensor product approach
title_fullStr The ideal of p-compact operators: a tensor product approach
title_full_unstemmed The ideal of p-compact operators: a tensor product approach
title_sort The ideal of p-compact operators: a tensor product approach
dc.creator.none.fl_str_mv Galicer, Daniel Eric
Lassalle, Silvia Beatriz
Turco, Pablo Alejandro
author Galicer, Daniel Eric
author_facet Galicer, Daniel Eric
Lassalle, Silvia Beatriz
Turco, Pablo Alejandro
author_role author
author2 Lassalle, Silvia Beatriz
Turco, Pablo Alejandro
author2_role author
author
dc.subject.none.fl_str_mv ABSOLUTELY P-SUMMING OPERATORS
APPROXIMATION PROPERTIES
P-COMPACT OPERATORS
QUASI P-NUCLEAR OPERATORS
TENSOR NORMS
topic ABSOLUTELY P-SUMMING OPERATORS
APPROXIMATION PROPERTIES
P-COMPACT OPERATORS
QUASI P-NUCLEAR OPERATORS
TENSOR NORMS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the space of p-compact operators, Kp, using the theory of tensor norms and operator ideals. We prove that Kp is associated to /dp, the left injective associate of the Chevet-Saphar tensor norm dp (which is equal to g' p' ). This allows us to relate the theory of p-summing operators to that of p-compact operators. Using the results known for the former class and appropriate hypotheses on E and F we prove that K p(E; F) is equal to Kq(E; F) for a wide range of values of p and q, and show that our results are sharp. We also exhibit several structural properties of Kp. For instance, we show that Kp is regular, surjective, and totally accessible, and we characterize its maximal hull Kmax p as the dual ideal of p-summing operators, Πdual p . Furthermore, we prove that Kp coincides isometrically with QNdual p , the dual to the ideal of the quasi p-nuclear operators.
Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Lassalle, Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Turco, Pablo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description We study the space of p-compact operators, Kp, using the theory of tensor norms and operator ideals. We prove that Kp is associated to /dp, the left injective associate of the Chevet-Saphar tensor norm dp (which is equal to g' p' ). This allows us to relate the theory of p-summing operators to that of p-compact operators. Using the results known for the former class and appropriate hypotheses on E and F we prove that K p(E; F) is equal to Kq(E; F) for a wide range of values of p and q, and show that our results are sharp. We also exhibit several structural properties of Kp. For instance, we show that Kp is regular, surjective, and totally accessible, and we characterize its maximal hull Kmax p as the dual ideal of p-summing operators, Πdual p . Furthermore, we prove that Kp coincides isometrically with QNdual p , the dual to the ideal of the quasi p-nuclear operators.
publishDate 2012
dc.date.none.fl_str_mv 2012-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/151173
Galicer, Daniel Eric; Lassalle, Silvia Beatriz; Turco, Pablo Alejandro; The ideal of p-compact operators: a tensor product approach; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 211; 3; 12-2012; 269-286
0039-3223
CONICET Digital
CONICET
url http://hdl.handle.net/11336/151173
identifier_str_mv Galicer, Daniel Eric; Lassalle, Silvia Beatriz; Turco, Pablo Alejandro; The ideal of p-compact operators: a tensor product approach; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 211; 3; 12-2012; 269-286
0039-3223
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journals.impan.pl/cgi-bin/doi?sm211-3-8
info:eu-repo/semantics/altIdentifier/doi/10.4064/sm211-3-8
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1110.3251
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Polish Academy of Sciences. Institute of Mathematics
publisher.none.fl_str_mv Polish Academy of Sciences. Institute of Mathematics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614224566812672
score 13.070432