The mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation

Autores
Dorrego, Gustavo Abel
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we study an n-dimensional generalization of timefractional diffusion-wave equation, where the Laplacian operator is replaced by the ultra-hyperbolic operator and the time-fractional derivative is taken in the Hilfer sense. The analytical solution is obtained in terms of the Fox’s H-function, for which the inverse Fourier transform of a Mittag–Leffler-type function that contains in its argument a positive-definite quadratic form is calculated.
Fil: Dorrego, Gustavo Abel. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
Fil: Dorrego, Gustavo Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet-Nordeste; Argentina.
Fuente
Integral transforms and special functions, 2016, vol. 27, no. 5, p. 392-404.
Materia
Fractional differential equation
Hilfer fractional derivative
Caputo fractional derivative
Riemann liouville fractional derivative
Mittag leffler type function
Fox's h function
Integrals transforms
Ultra hyperbolic operator
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
Institución
Universidad Nacional del Nordeste
OAI Identificador
oai:repositorio.unne.edu.ar:123456789/9111

id RIUNNE_d55a424eabde937e15a84d018348f249
oai_identifier_str oai:repositorio.unne.edu.ar:123456789/9111
network_acronym_str RIUNNE
repository_id_str 4871
network_name_str Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
spelling The mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equationDorrego, Gustavo AbelFractional differential equationHilfer fractional derivativeCaputo fractional derivativeRiemann liouville fractional derivativeMittag leffler type functionFox's h functionIntegrals transformsUltra hyperbolic operatorIn this paper we study an n-dimensional generalization of timefractional diffusion-wave equation, where the Laplacian operator is replaced by the ultra-hyperbolic operator and the time-fractional derivative is taken in the Hilfer sense. The analytical solution is obtained in terms of the Fox’s H-function, for which the inverse Fourier transform of a Mittag–Leffler-type function that contains in its argument a positive-definite quadratic form is calculated.Fil: Dorrego, Gustavo Abel. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.Fil: Dorrego, Gustavo Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet-Nordeste; Argentina.Taylor & Francis Group2016-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfp. 392-404application/pdfDorrego, Gustavo Abel, 2016. The Mittag Leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation. Integral Transforms and Special Functions. Reino Unido: Taylor & Francis Group, vol. 27, no. 5, p. 392-404. ISSN 1476-829.1476-829http://repositorio.unne.edu.ar/handle/123456789/9111Integral transforms and special functions, 2016, vol. 27, no. 5, p. 392-404.reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)instname:Universidad Nacional del Nordesteenghttp://dx.doi.org/10.1080/10652469.2016.1144185info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/Atribución-NoComercial-SinDerivadas 2.5 Argentina2025-10-16T10:06:51Zoai:repositorio.unne.edu.ar:123456789/9111instacron:UNNEInstitucionalhttp://repositorio.unne.edu.ar/Universidad públicaNo correspondehttp://repositorio.unne.edu.ar/oaiososa@bib.unne.edu.ar;sergio.alegria@unne.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:48712025-10-16 10:06:52.084Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordestefalse
dc.title.none.fl_str_mv The mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation
title The mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation
spellingShingle The mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation
Dorrego, Gustavo Abel
Fractional differential equation
Hilfer fractional derivative
Caputo fractional derivative
Riemann liouville fractional derivative
Mittag leffler type function
Fox's h function
Integrals transforms
Ultra hyperbolic operator
title_short The mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation
title_full The mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation
title_fullStr The mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation
title_full_unstemmed The mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation
title_sort The mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation
dc.creator.none.fl_str_mv Dorrego, Gustavo Abel
author Dorrego, Gustavo Abel
author_facet Dorrego, Gustavo Abel
author_role author
dc.subject.none.fl_str_mv Fractional differential equation
Hilfer fractional derivative
Caputo fractional derivative
Riemann liouville fractional derivative
Mittag leffler type function
Fox's h function
Integrals transforms
Ultra hyperbolic operator
topic Fractional differential equation
Hilfer fractional derivative
Caputo fractional derivative
Riemann liouville fractional derivative
Mittag leffler type function
Fox's h function
Integrals transforms
Ultra hyperbolic operator
dc.description.none.fl_txt_mv In this paper we study an n-dimensional generalization of timefractional diffusion-wave equation, where the Laplacian operator is replaced by the ultra-hyperbolic operator and the time-fractional derivative is taken in the Hilfer sense. The analytical solution is obtained in terms of the Fox’s H-function, for which the inverse Fourier transform of a Mittag–Leffler-type function that contains in its argument a positive-definite quadratic form is calculated.
Fil: Dorrego, Gustavo Abel. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
Fil: Dorrego, Gustavo Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet-Nordeste; Argentina.
description In this paper we study an n-dimensional generalization of timefractional diffusion-wave equation, where the Laplacian operator is replaced by the ultra-hyperbolic operator and the time-fractional derivative is taken in the Hilfer sense. The analytical solution is obtained in terms of the Fox’s H-function, for which the inverse Fourier transform of a Mittag–Leffler-type function that contains in its argument a positive-definite quadratic form is calculated.
publishDate 2016
dc.date.none.fl_str_mv 2016-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Dorrego, Gustavo Abel, 2016. The Mittag Leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation. Integral Transforms and Special Functions. Reino Unido: Taylor & Francis Group, vol. 27, no. 5, p. 392-404. ISSN 1476-829.
1476-829
http://repositorio.unne.edu.ar/handle/123456789/9111
identifier_str_mv Dorrego, Gustavo Abel, 2016. The Mittag Leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation. Integral Transforms and Special Functions. Reino Unido: Taylor & Francis Group, vol. 27, no. 5, p. 392-404. ISSN 1476-829.
1476-829
url http://repositorio.unne.edu.ar/handle/123456789/9111
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://dx.doi.org/10.1080/10652469.2016.1144185
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Atribución-NoComercial-SinDerivadas 2.5 Argentina
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Atribución-NoComercial-SinDerivadas 2.5 Argentina
dc.format.none.fl_str_mv application/pdf
p. 392-404
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis Group
publisher.none.fl_str_mv Taylor & Francis Group
dc.source.none.fl_str_mv Integral transforms and special functions, 2016, vol. 27, no. 5, p. 392-404.
reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
instname:Universidad Nacional del Nordeste
reponame_str Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
collection Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
instname_str Universidad Nacional del Nordeste
repository.name.fl_str_mv Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordeste
repository.mail.fl_str_mv ososa@bib.unne.edu.ar;sergio.alegria@unne.edu.ar
_version_ 1846145992286535680
score 12.712165