A generalized neumann solution for the two-phase fractional lame-clapeyron-stefan problem
- Autores
- Roscani, Sabrina Dina; Tarzia, Domingo Alberto
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We obtain a generalized Neumann solution for the two-phase fractional Lam´eClapeyron-Stefan problem for a semi-infinite material with constant boundary and initial conditions. In this problem, the two governing equations and a governing condition for the free boundary include a fractional time derivative in the Caputo sense of order 0 < α ≤ 1. When α ↗ 1 we recover the classical Neumann solution for the two-phase Lam´eClapeyron-Stefan problem given through the error function
Fil: Roscani, Sabrina Dina. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Cs.empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
LAME-CLAPEYRON-STEFAN PROBLEM
NEUMANN SOLUTION
FRACTIONAL DIFFUSION EQUATION
CAPUTO FRACTIONAL DERIVATIVE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/31039
Ver los metadatos del registro completo
id |
CONICETDig_142cafb034b8c7d8b22ea93d9310ab0b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/31039 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A generalized neumann solution for the two-phase fractional lame-clapeyron-stefan problemRoscani, Sabrina DinaTarzia, Domingo AlbertoLAME-CLAPEYRON-STEFAN PROBLEMNEUMANN SOLUTIONFRACTIONAL DIFFUSION EQUATIONCAPUTO FRACTIONAL DERIVATIVEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We obtain a generalized Neumann solution for the two-phase fractional Lam´eClapeyron-Stefan problem for a semi-infinite material with constant boundary and initial conditions. In this problem, the two governing equations and a governing condition for the free boundary include a fractional time derivative in the Caputo sense of order 0 < α ≤ 1. When α ↗ 1 we recover the classical Neumann solution for the two-phase Lam´eClapeyron-Stefan problem given through the error functionFil: Roscani, Sabrina Dina. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Cs.empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaGakkotosho2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/31039Tarzia, Domingo Alberto; Roscani, Sabrina Dina; A generalized neumann solution for the two-phase fractional lame-clapeyron-stefan problem; Gakkotosho; Advances In Mathematical Sciences And Applications; 24; 2; 4-2014; 237-2491343-4373CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1405.5928info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:52Zoai:ri.conicet.gov.ar:11336/31039instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:52.54CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A generalized neumann solution for the two-phase fractional lame-clapeyron-stefan problem |
title |
A generalized neumann solution for the two-phase fractional lame-clapeyron-stefan problem |
spellingShingle |
A generalized neumann solution for the two-phase fractional lame-clapeyron-stefan problem Roscani, Sabrina Dina LAME-CLAPEYRON-STEFAN PROBLEM NEUMANN SOLUTION FRACTIONAL DIFFUSION EQUATION CAPUTO FRACTIONAL DERIVATIVE |
title_short |
A generalized neumann solution for the two-phase fractional lame-clapeyron-stefan problem |
title_full |
A generalized neumann solution for the two-phase fractional lame-clapeyron-stefan problem |
title_fullStr |
A generalized neumann solution for the two-phase fractional lame-clapeyron-stefan problem |
title_full_unstemmed |
A generalized neumann solution for the two-phase fractional lame-clapeyron-stefan problem |
title_sort |
A generalized neumann solution for the two-phase fractional lame-clapeyron-stefan problem |
dc.creator.none.fl_str_mv |
Roscani, Sabrina Dina Tarzia, Domingo Alberto |
author |
Roscani, Sabrina Dina |
author_facet |
Roscani, Sabrina Dina Tarzia, Domingo Alberto |
author_role |
author |
author2 |
Tarzia, Domingo Alberto |
author2_role |
author |
dc.subject.none.fl_str_mv |
LAME-CLAPEYRON-STEFAN PROBLEM NEUMANN SOLUTION FRACTIONAL DIFFUSION EQUATION CAPUTO FRACTIONAL DERIVATIVE |
topic |
LAME-CLAPEYRON-STEFAN PROBLEM NEUMANN SOLUTION FRACTIONAL DIFFUSION EQUATION CAPUTO FRACTIONAL DERIVATIVE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We obtain a generalized Neumann solution for the two-phase fractional Lam´eClapeyron-Stefan problem for a semi-infinite material with constant boundary and initial conditions. In this problem, the two governing equations and a governing condition for the free boundary include a fractional time derivative in the Caputo sense of order 0 < α ≤ 1. When α ↗ 1 we recover the classical Neumann solution for the two-phase Lam´eClapeyron-Stefan problem given through the error function Fil: Roscani, Sabrina Dina. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Cs.empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We obtain a generalized Neumann solution for the two-phase fractional Lam´eClapeyron-Stefan problem for a semi-infinite material with constant boundary and initial conditions. In this problem, the two governing equations and a governing condition for the free boundary include a fractional time derivative in the Caputo sense of order 0 < α ≤ 1. When α ↗ 1 we recover the classical Neumann solution for the two-phase Lam´eClapeyron-Stefan problem given through the error function |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/31039 Tarzia, Domingo Alberto; Roscani, Sabrina Dina; A generalized neumann solution for the two-phase fractional lame-clapeyron-stefan problem; Gakkotosho; Advances In Mathematical Sciences And Applications; 24; 2; 4-2014; 237-249 1343-4373 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/31039 |
identifier_str_mv |
Tarzia, Domingo Alberto; Roscani, Sabrina Dina; A generalized neumann solution for the two-phase fractional lame-clapeyron-stefan problem; Gakkotosho; Advances In Mathematical Sciences And Applications; 24; 2; 4-2014; 237-249 1343-4373 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1405.5928 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Gakkotosho |
publisher.none.fl_str_mv |
Gakkotosho |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269606437191680 |
score |
13.13397 |