Wave packet dynamics for a non-linear Schrödinger equation describing continuous position measurements
- Autores
- Zander, C.; Plastino, Ángel Ricardo; Díaz Alonso, J.
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We investigate time-dependent solutions for a non-linear Schrödinger equation recently proposed by Nassar and Miret-Artés (NM) to describe the continuous measurement of the position of a quantum particle (Nassar, 2013; Nassar and Miret-Artés, 2013). Here we extend these previous studies in two different directions. On the one hand, we incorporate a potential energy term in the NM equation and explore the corresponding wave packet dynamics, while in the previous works the analysis was restricted to the free-particle case. On the other hand, we investigate time-dependent solutions while previous studies focused on a stationary one. We obtain exact wave packet solutions for linear and quadratic potentials, and approximate solutions for the Morse potential. The free-particle case is also revisited from a time-dependent point of view. Our analysis of time-dependent solutions allows us to determine the stability properties of the stationary solution considered in Nassar (2013), Nassar and Miret-Artés (2013). On the basis of these results we reconsider the Bohmian approach to the NM equation, taking into account the fact that the evolution equation for the probability density ρ=|ψ|2 is not a continuity equation. We show that the effect of the source term appearing in the evolution equation for ρ has to be explicitly taken into account when interpreting the NM equation from a Bohmian point of view.
Fil: Zander, C.. University of Pretoria; Sudáfrica
Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina
Fil: Díaz Alonso, J.. Université Paris Diderot - Paris 7; Francia. Universidad de Oviedo; España - Materia
-
NONLINEAR PHYSICS
NONLINEAR SCHRÖDINGER EQUATION
QUANTUM MEASUREMENT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/85742
Ver los metadatos del registro completo
id |
CONICETDig_6970262d9fd4f21570d60f390826ba06 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/85742 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Wave packet dynamics for a non-linear Schrödinger equation describing continuous position measurementsZander, C.Plastino, Ángel RicardoDíaz Alonso, J.NONLINEAR PHYSICSNONLINEAR SCHRÖDINGER EQUATIONQUANTUM MEASUREMENThttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We investigate time-dependent solutions for a non-linear Schrödinger equation recently proposed by Nassar and Miret-Artés (NM) to describe the continuous measurement of the position of a quantum particle (Nassar, 2013; Nassar and Miret-Artés, 2013). Here we extend these previous studies in two different directions. On the one hand, we incorporate a potential energy term in the NM equation and explore the corresponding wave packet dynamics, while in the previous works the analysis was restricted to the free-particle case. On the other hand, we investigate time-dependent solutions while previous studies focused on a stationary one. We obtain exact wave packet solutions for linear and quadratic potentials, and approximate solutions for the Morse potential. The free-particle case is also revisited from a time-dependent point of view. Our analysis of time-dependent solutions allows us to determine the stability properties of the stationary solution considered in Nassar (2013), Nassar and Miret-Artés (2013). On the basis of these results we reconsider the Bohmian approach to the NM equation, taking into account the fact that the evolution equation for the probability density ρ=|ψ|2 is not a continuity equation. We show that the effect of the source term appearing in the evolution equation for ρ has to be explicitly taken into account when interpreting the NM equation from a Bohmian point of view.Fil: Zander, C.. University of Pretoria; SudáfricaFil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; ArgentinaFil: Díaz Alonso, J.. Université Paris Diderot - Paris 7; Francia. Universidad de Oviedo; EspañaAcademic Press Inc Elsevier Science2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/85742Zander, C.; Plastino, Ángel Ricardo; Díaz Alonso, J.; Wave packet dynamics for a non-linear Schrödinger equation describing continuous position measurements; Academic Press Inc Elsevier Science; Annals of Physics (New York); 362; 11-2015; 36-560003-4916CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.aop.2015.07.019info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003491615002845info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:04Zoai:ri.conicet.gov.ar:11336/85742instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:04.578CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Wave packet dynamics for a non-linear Schrödinger equation describing continuous position measurements |
title |
Wave packet dynamics for a non-linear Schrödinger equation describing continuous position measurements |
spellingShingle |
Wave packet dynamics for a non-linear Schrödinger equation describing continuous position measurements Zander, C. NONLINEAR PHYSICS NONLINEAR SCHRÖDINGER EQUATION QUANTUM MEASUREMENT |
title_short |
Wave packet dynamics for a non-linear Schrödinger equation describing continuous position measurements |
title_full |
Wave packet dynamics for a non-linear Schrödinger equation describing continuous position measurements |
title_fullStr |
Wave packet dynamics for a non-linear Schrödinger equation describing continuous position measurements |
title_full_unstemmed |
Wave packet dynamics for a non-linear Schrödinger equation describing continuous position measurements |
title_sort |
Wave packet dynamics for a non-linear Schrödinger equation describing continuous position measurements |
dc.creator.none.fl_str_mv |
Zander, C. Plastino, Ángel Ricardo Díaz Alonso, J. |
author |
Zander, C. |
author_facet |
Zander, C. Plastino, Ángel Ricardo Díaz Alonso, J. |
author_role |
author |
author2 |
Plastino, Ángel Ricardo Díaz Alonso, J. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
NONLINEAR PHYSICS NONLINEAR SCHRÖDINGER EQUATION QUANTUM MEASUREMENT |
topic |
NONLINEAR PHYSICS NONLINEAR SCHRÖDINGER EQUATION QUANTUM MEASUREMENT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We investigate time-dependent solutions for a non-linear Schrödinger equation recently proposed by Nassar and Miret-Artés (NM) to describe the continuous measurement of the position of a quantum particle (Nassar, 2013; Nassar and Miret-Artés, 2013). Here we extend these previous studies in two different directions. On the one hand, we incorporate a potential energy term in the NM equation and explore the corresponding wave packet dynamics, while in the previous works the analysis was restricted to the free-particle case. On the other hand, we investigate time-dependent solutions while previous studies focused on a stationary one. We obtain exact wave packet solutions for linear and quadratic potentials, and approximate solutions for the Morse potential. The free-particle case is also revisited from a time-dependent point of view. Our analysis of time-dependent solutions allows us to determine the stability properties of the stationary solution considered in Nassar (2013), Nassar and Miret-Artés (2013). On the basis of these results we reconsider the Bohmian approach to the NM equation, taking into account the fact that the evolution equation for the probability density ρ=|ψ|2 is not a continuity equation. We show that the effect of the source term appearing in the evolution equation for ρ has to be explicitly taken into account when interpreting the NM equation from a Bohmian point of view. Fil: Zander, C.. University of Pretoria; Sudáfrica Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina Fil: Díaz Alonso, J.. Université Paris Diderot - Paris 7; Francia. Universidad de Oviedo; España |
description |
We investigate time-dependent solutions for a non-linear Schrödinger equation recently proposed by Nassar and Miret-Artés (NM) to describe the continuous measurement of the position of a quantum particle (Nassar, 2013; Nassar and Miret-Artés, 2013). Here we extend these previous studies in two different directions. On the one hand, we incorporate a potential energy term in the NM equation and explore the corresponding wave packet dynamics, while in the previous works the analysis was restricted to the free-particle case. On the other hand, we investigate time-dependent solutions while previous studies focused on a stationary one. We obtain exact wave packet solutions for linear and quadratic potentials, and approximate solutions for the Morse potential. The free-particle case is also revisited from a time-dependent point of view. Our analysis of time-dependent solutions allows us to determine the stability properties of the stationary solution considered in Nassar (2013), Nassar and Miret-Artés (2013). On the basis of these results we reconsider the Bohmian approach to the NM equation, taking into account the fact that the evolution equation for the probability density ρ=|ψ|2 is not a continuity equation. We show that the effect of the source term appearing in the evolution equation for ρ has to be explicitly taken into account when interpreting the NM equation from a Bohmian point of view. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/85742 Zander, C.; Plastino, Ángel Ricardo; Díaz Alonso, J.; Wave packet dynamics for a non-linear Schrödinger equation describing continuous position measurements; Academic Press Inc Elsevier Science; Annals of Physics (New York); 362; 11-2015; 36-56 0003-4916 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/85742 |
identifier_str_mv |
Zander, C.; Plastino, Ángel Ricardo; Díaz Alonso, J.; Wave packet dynamics for a non-linear Schrödinger equation describing continuous position measurements; Academic Press Inc Elsevier Science; Annals of Physics (New York); 362; 11-2015; 36-56 0003-4916 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aop.2015.07.019 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003491615002845 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269438174298112 |
score |
13.13397 |