Tsallis’ maximum entropy ansatz leading to exact analytical time dependent wave packet solutions of a nonlinear Schrödinger equation
- Autores
- Curilef, S.; Plastino, Ángel Ricardo; Plastino, Ángel Luis
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Tsallis maximum entropy distributions provide useful tools for the study of a wide range of scenarios in mathematics, physics, and other fields. Here we apply a Tsallis maximum entropy ansatz, the q-Gaussian, to obtain time dependent wave-packet solutions to a nonlinear Schrödinger equation recently advanced by Nobre, Rego-Monteiro and Tsallis (NRT) [F.D. Nobre, M.A. Rego-Monteiro, C. Tsallis, Phys. Rev. Lett. 106 (2011) 140601]. The NRT nonlinear equation admits plane wave-like solutions (q-plane waves) compatible with the celebrated de Broglie relations connecting wave number and frequency, respectively, with energy and momentum. The NRT equation, inspired in the q-generalized thermostatistical formalism, is characterized by a parameter q and in the limit q→1 reduces to the standard, linear Schrödinger equation. The q-Gaussian solutions to the NRT equation investigated here admit as a particular instance the previously known q-plane wave solutions. The present work thus extends the range of possible processes yielded by the NRT dynamics that admit an analytical, exact treatment. In the q→1 limit the q-Gaussian solutions correspond to the Gaussian wave packet solutions to the free particle linear Schrödinger equation. In the present work we also show that there are other families of nonlinear Schrödinger-like equations, besides the NRT one, exhibiting a dynamics compatible with the de Broglie relations. Remarkably, however, the existence of time dependent Gaussian-like wave packet solutions is a unique feature of the NRT equation not shared by the aforementioned, more general, families of nonlinear evolution equations.
Fil: Curilef, S.. Departamento de Física. Universidad Católica del Norte. Antofagasta; Chile
Fil: Plastino, Ángel Ricardo. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Universidad de Granada; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Plastino, Ángel Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad de las Islas Baleares; España. Consejo Superior de Investigaciones Cientificas; España - Materia
-
Tsallis Entropy
Nonlinear Scrhoedinger Equation
Power Laws
Wave Packets - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/22548
Ver los metadatos del registro completo
id |
CONICETDig_c6471b8701989638f5b522cfebe5da56 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/22548 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Tsallis’ maximum entropy ansatz leading to exact analytical time dependent wave packet solutions of a nonlinear Schrödinger equationCurilef, S.Plastino, Ángel RicardoPlastino, Ángel LuisTsallis EntropyNonlinear Scrhoedinger EquationPower LawsWave Packetshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Tsallis maximum entropy distributions provide useful tools for the study of a wide range of scenarios in mathematics, physics, and other fields. Here we apply a Tsallis maximum entropy ansatz, the q-Gaussian, to obtain time dependent wave-packet solutions to a nonlinear Schrödinger equation recently advanced by Nobre, Rego-Monteiro and Tsallis (NRT) [F.D. Nobre, M.A. Rego-Monteiro, C. Tsallis, Phys. Rev. Lett. 106 (2011) 140601]. The NRT nonlinear equation admits plane wave-like solutions (q-plane waves) compatible with the celebrated de Broglie relations connecting wave number and frequency, respectively, with energy and momentum. The NRT equation, inspired in the q-generalized thermostatistical formalism, is characterized by a parameter q and in the limit q→1 reduces to the standard, linear Schrödinger equation. The q-Gaussian solutions to the NRT equation investigated here admit as a particular instance the previously known q-plane wave solutions. The present work thus extends the range of possible processes yielded by the NRT dynamics that admit an analytical, exact treatment. In the q→1 limit the q-Gaussian solutions correspond to the Gaussian wave packet solutions to the free particle linear Schrödinger equation. In the present work we also show that there are other families of nonlinear Schrödinger-like equations, besides the NRT one, exhibiting a dynamics compatible with the de Broglie relations. Remarkably, however, the existence of time dependent Gaussian-like wave packet solutions is a unique feature of the NRT equation not shared by the aforementioned, more general, families of nonlinear evolution equations.Fil: Curilef, S.. Departamento de Física. Universidad Católica del Norte. Antofagasta; ChileFil: Plastino, Ángel Ricardo. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Universidad de Granada; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Plastino, Ángel Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad de las Islas Baleares; España. Consejo Superior de Investigaciones Cientificas; EspañaElsevier2013-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22548Curilef, S.; Plastino, Ángel Ricardo; Plastino, Ángel Luis; Tsallis’ maximum entropy ansatz leading to exact analytical time dependent wave packet solutions of a nonlinear Schrödinger equation; Elsevier; Physica A: Statistical Mechanics and its Applications; 392; 11; 2-2013; 2631-26420378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113001362info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2012.12.041info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:08:06Zoai:ri.conicet.gov.ar:11336/22548instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:08:07.189CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Tsallis’ maximum entropy ansatz leading to exact analytical time dependent wave packet solutions of a nonlinear Schrödinger equation |
title |
Tsallis’ maximum entropy ansatz leading to exact analytical time dependent wave packet solutions of a nonlinear Schrödinger equation |
spellingShingle |
Tsallis’ maximum entropy ansatz leading to exact analytical time dependent wave packet solutions of a nonlinear Schrödinger equation Curilef, S. Tsallis Entropy Nonlinear Scrhoedinger Equation Power Laws Wave Packets |
title_short |
Tsallis’ maximum entropy ansatz leading to exact analytical time dependent wave packet solutions of a nonlinear Schrödinger equation |
title_full |
Tsallis’ maximum entropy ansatz leading to exact analytical time dependent wave packet solutions of a nonlinear Schrödinger equation |
title_fullStr |
Tsallis’ maximum entropy ansatz leading to exact analytical time dependent wave packet solutions of a nonlinear Schrödinger equation |
title_full_unstemmed |
Tsallis’ maximum entropy ansatz leading to exact analytical time dependent wave packet solutions of a nonlinear Schrödinger equation |
title_sort |
Tsallis’ maximum entropy ansatz leading to exact analytical time dependent wave packet solutions of a nonlinear Schrödinger equation |
dc.creator.none.fl_str_mv |
Curilef, S. Plastino, Ángel Ricardo Plastino, Ángel Luis |
author |
Curilef, S. |
author_facet |
Curilef, S. Plastino, Ángel Ricardo Plastino, Ángel Luis |
author_role |
author |
author2 |
Plastino, Ángel Ricardo Plastino, Ángel Luis |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Tsallis Entropy Nonlinear Scrhoedinger Equation Power Laws Wave Packets |
topic |
Tsallis Entropy Nonlinear Scrhoedinger Equation Power Laws Wave Packets |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Tsallis maximum entropy distributions provide useful tools for the study of a wide range of scenarios in mathematics, physics, and other fields. Here we apply a Tsallis maximum entropy ansatz, the q-Gaussian, to obtain time dependent wave-packet solutions to a nonlinear Schrödinger equation recently advanced by Nobre, Rego-Monteiro and Tsallis (NRT) [F.D. Nobre, M.A. Rego-Monteiro, C. Tsallis, Phys. Rev. Lett. 106 (2011) 140601]. The NRT nonlinear equation admits plane wave-like solutions (q-plane waves) compatible with the celebrated de Broglie relations connecting wave number and frequency, respectively, with energy and momentum. The NRT equation, inspired in the q-generalized thermostatistical formalism, is characterized by a parameter q and in the limit q→1 reduces to the standard, linear Schrödinger equation. The q-Gaussian solutions to the NRT equation investigated here admit as a particular instance the previously known q-plane wave solutions. The present work thus extends the range of possible processes yielded by the NRT dynamics that admit an analytical, exact treatment. In the q→1 limit the q-Gaussian solutions correspond to the Gaussian wave packet solutions to the free particle linear Schrödinger equation. In the present work we also show that there are other families of nonlinear Schrödinger-like equations, besides the NRT one, exhibiting a dynamics compatible with the de Broglie relations. Remarkably, however, the existence of time dependent Gaussian-like wave packet solutions is a unique feature of the NRT equation not shared by the aforementioned, more general, families of nonlinear evolution equations. Fil: Curilef, S.. Departamento de Física. Universidad Católica del Norte. Antofagasta; Chile Fil: Plastino, Ángel Ricardo. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Universidad de Granada; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Plastino, Ángel Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad de las Islas Baleares; España. Consejo Superior de Investigaciones Cientificas; España |
description |
Tsallis maximum entropy distributions provide useful tools for the study of a wide range of scenarios in mathematics, physics, and other fields. Here we apply a Tsallis maximum entropy ansatz, the q-Gaussian, to obtain time dependent wave-packet solutions to a nonlinear Schrödinger equation recently advanced by Nobre, Rego-Monteiro and Tsallis (NRT) [F.D. Nobre, M.A. Rego-Monteiro, C. Tsallis, Phys. Rev. Lett. 106 (2011) 140601]. The NRT nonlinear equation admits plane wave-like solutions (q-plane waves) compatible with the celebrated de Broglie relations connecting wave number and frequency, respectively, with energy and momentum. The NRT equation, inspired in the q-generalized thermostatistical formalism, is characterized by a parameter q and in the limit q→1 reduces to the standard, linear Schrödinger equation. The q-Gaussian solutions to the NRT equation investigated here admit as a particular instance the previously known q-plane wave solutions. The present work thus extends the range of possible processes yielded by the NRT dynamics that admit an analytical, exact treatment. In the q→1 limit the q-Gaussian solutions correspond to the Gaussian wave packet solutions to the free particle linear Schrödinger equation. In the present work we also show that there are other families of nonlinear Schrödinger-like equations, besides the NRT one, exhibiting a dynamics compatible with the de Broglie relations. Remarkably, however, the existence of time dependent Gaussian-like wave packet solutions is a unique feature of the NRT equation not shared by the aforementioned, more general, families of nonlinear evolution equations. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/22548 Curilef, S.; Plastino, Ángel Ricardo; Plastino, Ángel Luis; Tsallis’ maximum entropy ansatz leading to exact analytical time dependent wave packet solutions of a nonlinear Schrödinger equation; Elsevier; Physica A: Statistical Mechanics and its Applications; 392; 11; 2-2013; 2631-2642 0378-4371 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/22548 |
identifier_str_mv |
Curilef, S.; Plastino, Ángel Ricardo; Plastino, Ángel Luis; Tsallis’ maximum entropy ansatz leading to exact analytical time dependent wave packet solutions of a nonlinear Schrödinger equation; Elsevier; Physica A: Statistical Mechanics and its Applications; 392; 11; 2-2013; 2631-2642 0378-4371 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113001362 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2012.12.041 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606406849101824 |
score |
13.000565 |