Controllability of Schrödinger equation with a nonlocal term
- Autores
- de Leo, Mariano Fernando; Sanchez Fernandez de la Vega, Constanza Mariel; Rial, Diego Fernando
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper is concerned with the internal distributed control problem for the 1D Schrödinger equation, i ut(x,t) = −uxx+α(x) u+m(u) u, that arises in quantum semiconductor models. Here m(u) is a non local Hartree–type nonlinearity stemming from the coupling with the 1D Poisson equation, and α(x) is a regular function with linear growth at infinity, including constant electric fields. By means of both the Hilbert Uniqueness Method and the contraction mapping theorem it is shown that for initial and target states belonging to a suitable small neighborhood of the origin, and for distributed controls supported outside of a fixed compact interval, the model equation is controllable. Moreover, it is shown that, for distributed controls with compact support, the exact controllability problem is not possible.
Fil: de Leo, Mariano Fernando. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Sanchez Fernandez de la Vega, Constanza Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Rial, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Nonlinear SchrödingerPoisson
Hartree potential
Constant electric field
Internal controllability. - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/30831
Ver los metadatos del registro completo
id |
CONICETDig_395dec2e685de2a2193c265a7484ab54 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/30831 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Controllability of Schrödinger equation with a nonlocal termde Leo, Mariano FernandoSanchez Fernandez de la Vega, Constanza MarielRial, Diego FernandoNonlinear SchrödingerPoissonHartree potentialConstant electric fieldInternal controllability.https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This paper is concerned with the internal distributed control problem for the 1D Schrödinger equation, i ut(x,t) = −uxx+α(x) u+m(u) u, that arises in quantum semiconductor models. Here m(u) is a non local Hartree–type nonlinearity stemming from the coupling with the 1D Poisson equation, and α(x) is a regular function with linear growth at infinity, including constant electric fields. By means of both the Hilbert Uniqueness Method and the contraction mapping theorem it is shown that for initial and target states belonging to a suitable small neighborhood of the origin, and for distributed controls supported outside of a fixed compact interval, the model equation is controllable. Moreover, it is shown that, for distributed controls with compact support, the exact controllability problem is not possible.Fil: de Leo, Mariano Fernando. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sanchez Fernandez de la Vega, Constanza Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Rial, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaEDP Sciences2013-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/30831Rial, Diego Fernando; Sanchez Fernandez de la Vega, Constanza Mariel; de Leo, Mariano Fernando; Controllability of Schrödinger equation with a nonlocal term; EDP Sciences; ESAIM-Control Optimisation and Calculus of Variations; 20; 1; 8-2013; 23-411262-3377CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1051/cocv/2013052info:eu-repo/semantics/altIdentifier/url/https://www.esaim-cocv.org/articles/cocv/abs/2014/01/cocv130052/cocv130052.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:03Zoai:ri.conicet.gov.ar:11336/30831instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:03.489CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Controllability of Schrödinger equation with a nonlocal term |
title |
Controllability of Schrödinger equation with a nonlocal term |
spellingShingle |
Controllability of Schrödinger equation with a nonlocal term de Leo, Mariano Fernando Nonlinear SchrödingerPoisson Hartree potential Constant electric field Internal controllability. |
title_short |
Controllability of Schrödinger equation with a nonlocal term |
title_full |
Controllability of Schrödinger equation with a nonlocal term |
title_fullStr |
Controllability of Schrödinger equation with a nonlocal term |
title_full_unstemmed |
Controllability of Schrödinger equation with a nonlocal term |
title_sort |
Controllability of Schrödinger equation with a nonlocal term |
dc.creator.none.fl_str_mv |
de Leo, Mariano Fernando Sanchez Fernandez de la Vega, Constanza Mariel Rial, Diego Fernando |
author |
de Leo, Mariano Fernando |
author_facet |
de Leo, Mariano Fernando Sanchez Fernandez de la Vega, Constanza Mariel Rial, Diego Fernando |
author_role |
author |
author2 |
Sanchez Fernandez de la Vega, Constanza Mariel Rial, Diego Fernando |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Nonlinear SchrödingerPoisson Hartree potential Constant electric field Internal controllability. |
topic |
Nonlinear SchrödingerPoisson Hartree potential Constant electric field Internal controllability. |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This paper is concerned with the internal distributed control problem for the 1D Schrödinger equation, i ut(x,t) = −uxx+α(x) u+m(u) u, that arises in quantum semiconductor models. Here m(u) is a non local Hartree–type nonlinearity stemming from the coupling with the 1D Poisson equation, and α(x) is a regular function with linear growth at infinity, including constant electric fields. By means of both the Hilbert Uniqueness Method and the contraction mapping theorem it is shown that for initial and target states belonging to a suitable small neighborhood of the origin, and for distributed controls supported outside of a fixed compact interval, the model equation is controllable. Moreover, it is shown that, for distributed controls with compact support, the exact controllability problem is not possible. Fil: de Leo, Mariano Fernando. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Sanchez Fernandez de la Vega, Constanza Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Rial, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
This paper is concerned with the internal distributed control problem for the 1D Schrödinger equation, i ut(x,t) = −uxx+α(x) u+m(u) u, that arises in quantum semiconductor models. Here m(u) is a non local Hartree–type nonlinearity stemming from the coupling with the 1D Poisson equation, and α(x) is a regular function with linear growth at infinity, including constant electric fields. By means of both the Hilbert Uniqueness Method and the contraction mapping theorem it is shown that for initial and target states belonging to a suitable small neighborhood of the origin, and for distributed controls supported outside of a fixed compact interval, the model equation is controllable. Moreover, it is shown that, for distributed controls with compact support, the exact controllability problem is not possible. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/30831 Rial, Diego Fernando; Sanchez Fernandez de la Vega, Constanza Mariel; de Leo, Mariano Fernando; Controllability of Schrödinger equation with a nonlocal term; EDP Sciences; ESAIM-Control Optimisation and Calculus of Variations; 20; 1; 8-2013; 23-41 1262-3377 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/30831 |
identifier_str_mv |
Rial, Diego Fernando; Sanchez Fernandez de la Vega, Constanza Mariel; de Leo, Mariano Fernando; Controllability of Schrödinger equation with a nonlocal term; EDP Sciences; ESAIM-Control Optimisation and Calculus of Variations; 20; 1; 8-2013; 23-41 1262-3377 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1051/cocv/2013052 info:eu-repo/semantics/altIdentifier/url/https://www.esaim-cocv.org/articles/cocv/abs/2014/01/cocv130052/cocv130052.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
EDP Sciences |
publisher.none.fl_str_mv |
EDP Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270143029182464 |
score |
13.13397 |