Existence of ground states for a one-dimensional relativistic schrödinger equation
- Autores
- Borgna, Juan Pablo; Rial, Diego Fernando
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Relativistic Schrödinger equation with a nonlinear potential interaction describes the dynamics of a particle, with rest mass m, travelling to a significant fraction |v| < 1 of the light speed c = 1. At first, we deal with the local and global existence of solutions of the flux, and in the second term, and according to the relativistic nature of the problem, we look for boosted solitons as ψ(x, t) = eiμtφv(x - vt), where the profile φ v ∈ H 1/2 (R{double-struck}) is a minimizer of a suitable variational problem. Our proof uses a concentration-compactness-type argument. Stability results for the boosted solitons are established.
Fil: Borgna, Juan Pablo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rial, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
GROUND STATES
NONLINEAR EQUATION
SCHROEDINGER EQUATION
SOLITONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/125772
Ver los metadatos del registro completo
id |
CONICETDig_beed4e4ceca6cc003d33a9c487beadd9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/125772 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Existence of ground states for a one-dimensional relativistic schrödinger equationBorgna, Juan PabloRial, Diego FernandoGROUND STATESNONLINEAR EQUATIONSCHROEDINGER EQUATIONSOLITONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Relativistic Schrödinger equation with a nonlinear potential interaction describes the dynamics of a particle, with rest mass m, travelling to a significant fraction |v| < 1 of the light speed c = 1. At first, we deal with the local and global existence of solutions of the flux, and in the second term, and according to the relativistic nature of the problem, we look for boosted solitons as ψ(x, t) = eiμtφv(x - vt), where the profile φ v ∈ H 1/2 (R{double-struck}) is a minimizer of a suitable variational problem. Our proof uses a concentration-compactness-type argument. Stability results for the boosted solitons are established.Fil: Borgna, Juan Pablo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rial, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAmerican Institute of Physics2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/125772Borgna, Juan Pablo; Rial, Diego Fernando; Existence of ground states for a one-dimensional relativistic schrödinger equation; American Institute of Physics; Journal of Mathematical Physics; 53; 6; 6-2012; 1-190022-2488CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.4726198info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.4726198info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:13Zoai:ri.conicet.gov.ar:11336/125772instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:13.296CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Existence of ground states for a one-dimensional relativistic schrödinger equation |
title |
Existence of ground states for a one-dimensional relativistic schrödinger equation |
spellingShingle |
Existence of ground states for a one-dimensional relativistic schrödinger equation Borgna, Juan Pablo GROUND STATES NONLINEAR EQUATION SCHROEDINGER EQUATION SOLITONS |
title_short |
Existence of ground states for a one-dimensional relativistic schrödinger equation |
title_full |
Existence of ground states for a one-dimensional relativistic schrödinger equation |
title_fullStr |
Existence of ground states for a one-dimensional relativistic schrödinger equation |
title_full_unstemmed |
Existence of ground states for a one-dimensional relativistic schrödinger equation |
title_sort |
Existence of ground states for a one-dimensional relativistic schrödinger equation |
dc.creator.none.fl_str_mv |
Borgna, Juan Pablo Rial, Diego Fernando |
author |
Borgna, Juan Pablo |
author_facet |
Borgna, Juan Pablo Rial, Diego Fernando |
author_role |
author |
author2 |
Rial, Diego Fernando |
author2_role |
author |
dc.subject.none.fl_str_mv |
GROUND STATES NONLINEAR EQUATION SCHROEDINGER EQUATION SOLITONS |
topic |
GROUND STATES NONLINEAR EQUATION SCHROEDINGER EQUATION SOLITONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Relativistic Schrödinger equation with a nonlinear potential interaction describes the dynamics of a particle, with rest mass m, travelling to a significant fraction |v| < 1 of the light speed c = 1. At first, we deal with the local and global existence of solutions of the flux, and in the second term, and according to the relativistic nature of the problem, we look for boosted solitons as ψ(x, t) = eiμtφv(x - vt), where the profile φ v ∈ H 1/2 (R{double-struck}) is a minimizer of a suitable variational problem. Our proof uses a concentration-compactness-type argument. Stability results for the boosted solitons are established. Fil: Borgna, Juan Pablo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Rial, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
Relativistic Schrödinger equation with a nonlinear potential interaction describes the dynamics of a particle, with rest mass m, travelling to a significant fraction |v| < 1 of the light speed c = 1. At first, we deal with the local and global existence of solutions of the flux, and in the second term, and according to the relativistic nature of the problem, we look for boosted solitons as ψ(x, t) = eiμtφv(x - vt), where the profile φ v ∈ H 1/2 (R{double-struck}) is a minimizer of a suitable variational problem. Our proof uses a concentration-compactness-type argument. Stability results for the boosted solitons are established. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/125772 Borgna, Juan Pablo; Rial, Diego Fernando; Existence of ground states for a one-dimensional relativistic schrödinger equation; American Institute of Physics; Journal of Mathematical Physics; 53; 6; 6-2012; 1-19 0022-2488 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/125772 |
identifier_str_mv |
Borgna, Juan Pablo; Rial, Diego Fernando; Existence of ground states for a one-dimensional relativistic schrödinger equation; American Institute of Physics; Journal of Mathematical Physics; 53; 6; 6-2012; 1-19 0022-2488 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4726198 info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.4726198 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613133722714112 |
score |
13.070432 |