Optimal distributed control problem for cubic nonlinear Schrödinger equation

Autores
Sanchez Fernandez de la Vega, Constanza Mariel; Rial, Diego Fernando
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider an optimal internal control problem for the cubic nonlinear Schrödinger (NLS) equation on the line. We prove well-posedness of the problem and existence of an optimal control. In addition, we show first-order optimality conditions. Also, the paper includes the proof of a smoothing effect for the non-homogeneous NLS, which is necessary to obtain the existence of an optimal control.
Fil: Sanchez Fernandez de la Vega, Constanza Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Rial, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
NOISE IMMUNITY
NONLINEAR SCHRÖDINGER EQUATION
OPTICAL FIBERS
OPTIMAL CONTROL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/88477

id CONICETDig_659e69a24a5138af4349218c9e79a4d5
oai_identifier_str oai:ri.conicet.gov.ar:11336/88477
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Optimal distributed control problem for cubic nonlinear Schrödinger equationSanchez Fernandez de la Vega, Constanza MarielRial, Diego FernandoNOISE IMMUNITYNONLINEAR SCHRÖDINGER EQUATIONOPTICAL FIBERSOPTIMAL CONTROLhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider an optimal internal control problem for the cubic nonlinear Schrödinger (NLS) equation on the line. We prove well-posedness of the problem and existence of an optimal control. In addition, we show first-order optimality conditions. Also, the paper includes the proof of a smoothing effect for the non-homogeneous NLS, which is necessary to obtain the existence of an optimal control.Fil: Sanchez Fernandez de la Vega, Constanza Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Rial, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer London Ltd2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88477Sanchez Fernandez de la Vega, Constanza Mariel; Rial, Diego Fernando; Optimal distributed control problem for cubic nonlinear Schrödinger equation; Springer London Ltd; Mathematics Of Control Signals And Systems; 30; 4; 12-2018; 1-240932-4194CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00498-018-0222-4info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00498-018-0222-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:45Zoai:ri.conicet.gov.ar:11336/88477instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:46.061CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Optimal distributed control problem for cubic nonlinear Schrödinger equation
title Optimal distributed control problem for cubic nonlinear Schrödinger equation
spellingShingle Optimal distributed control problem for cubic nonlinear Schrödinger equation
Sanchez Fernandez de la Vega, Constanza Mariel
NOISE IMMUNITY
NONLINEAR SCHRÖDINGER EQUATION
OPTICAL FIBERS
OPTIMAL CONTROL
title_short Optimal distributed control problem for cubic nonlinear Schrödinger equation
title_full Optimal distributed control problem for cubic nonlinear Schrödinger equation
title_fullStr Optimal distributed control problem for cubic nonlinear Schrödinger equation
title_full_unstemmed Optimal distributed control problem for cubic nonlinear Schrödinger equation
title_sort Optimal distributed control problem for cubic nonlinear Schrödinger equation
dc.creator.none.fl_str_mv Sanchez Fernandez de la Vega, Constanza Mariel
Rial, Diego Fernando
author Sanchez Fernandez de la Vega, Constanza Mariel
author_facet Sanchez Fernandez de la Vega, Constanza Mariel
Rial, Diego Fernando
author_role author
author2 Rial, Diego Fernando
author2_role author
dc.subject.none.fl_str_mv NOISE IMMUNITY
NONLINEAR SCHRÖDINGER EQUATION
OPTICAL FIBERS
OPTIMAL CONTROL
topic NOISE IMMUNITY
NONLINEAR SCHRÖDINGER EQUATION
OPTICAL FIBERS
OPTIMAL CONTROL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider an optimal internal control problem for the cubic nonlinear Schrödinger (NLS) equation on the line. We prove well-posedness of the problem and existence of an optimal control. In addition, we show first-order optimality conditions. Also, the paper includes the proof of a smoothing effect for the non-homogeneous NLS, which is necessary to obtain the existence of an optimal control.
Fil: Sanchez Fernandez de la Vega, Constanza Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Rial, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description We consider an optimal internal control problem for the cubic nonlinear Schrödinger (NLS) equation on the line. We prove well-posedness of the problem and existence of an optimal control. In addition, we show first-order optimality conditions. Also, the paper includes the proof of a smoothing effect for the non-homogeneous NLS, which is necessary to obtain the existence of an optimal control.
publishDate 2018
dc.date.none.fl_str_mv 2018-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/88477
Sanchez Fernandez de la Vega, Constanza Mariel; Rial, Diego Fernando; Optimal distributed control problem for cubic nonlinear Schrödinger equation; Springer London Ltd; Mathematics Of Control Signals And Systems; 30; 4; 12-2018; 1-24
0932-4194
CONICET Digital
CONICET
url http://hdl.handle.net/11336/88477
identifier_str_mv Sanchez Fernandez de la Vega, Constanza Mariel; Rial, Diego Fernando; Optimal distributed control problem for cubic nonlinear Schrödinger equation; Springer London Ltd; Mathematics Of Control Signals And Systems; 30; 4; 12-2018; 1-24
0932-4194
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s00498-018-0222-4
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00498-018-0222-4
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer London Ltd
publisher.none.fl_str_mv Springer London Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268815247802368
score 13.13397