Optimal distributed control problem for cubic nonlinear Schrödinger equation
- Autores
- Sanchez Fernandez de la Vega, Constanza Mariel; Rial, Diego Fernando
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider an optimal internal control problem for the cubic nonlinear Schrödinger (NLS) equation on the line. We prove well-posedness of the problem and existence of an optimal control. In addition, we show first-order optimality conditions. Also, the paper includes the proof of a smoothing effect for the non-homogeneous NLS, which is necessary to obtain the existence of an optimal control.
Fil: Sanchez Fernandez de la Vega, Constanza Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Rial, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
NOISE IMMUNITY
NONLINEAR SCHRÖDINGER EQUATION
OPTICAL FIBERS
OPTIMAL CONTROL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88477
Ver los metadatos del registro completo
id |
CONICETDig_659e69a24a5138af4349218c9e79a4d5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88477 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimal distributed control problem for cubic nonlinear Schrödinger equationSanchez Fernandez de la Vega, Constanza MarielRial, Diego FernandoNOISE IMMUNITYNONLINEAR SCHRÖDINGER EQUATIONOPTICAL FIBERSOPTIMAL CONTROLhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider an optimal internal control problem for the cubic nonlinear Schrödinger (NLS) equation on the line. We prove well-posedness of the problem and existence of an optimal control. In addition, we show first-order optimality conditions. Also, the paper includes the proof of a smoothing effect for the non-homogeneous NLS, which is necessary to obtain the existence of an optimal control.Fil: Sanchez Fernandez de la Vega, Constanza Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Rial, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer London Ltd2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88477Sanchez Fernandez de la Vega, Constanza Mariel; Rial, Diego Fernando; Optimal distributed control problem for cubic nonlinear Schrödinger equation; Springer London Ltd; Mathematics Of Control Signals And Systems; 30; 4; 12-2018; 1-240932-4194CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00498-018-0222-4info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00498-018-0222-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:45Zoai:ri.conicet.gov.ar:11336/88477instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:46.061CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimal distributed control problem for cubic nonlinear Schrödinger equation |
title |
Optimal distributed control problem for cubic nonlinear Schrödinger equation |
spellingShingle |
Optimal distributed control problem for cubic nonlinear Schrödinger equation Sanchez Fernandez de la Vega, Constanza Mariel NOISE IMMUNITY NONLINEAR SCHRÖDINGER EQUATION OPTICAL FIBERS OPTIMAL CONTROL |
title_short |
Optimal distributed control problem for cubic nonlinear Schrödinger equation |
title_full |
Optimal distributed control problem for cubic nonlinear Schrödinger equation |
title_fullStr |
Optimal distributed control problem for cubic nonlinear Schrödinger equation |
title_full_unstemmed |
Optimal distributed control problem for cubic nonlinear Schrödinger equation |
title_sort |
Optimal distributed control problem for cubic nonlinear Schrödinger equation |
dc.creator.none.fl_str_mv |
Sanchez Fernandez de la Vega, Constanza Mariel Rial, Diego Fernando |
author |
Sanchez Fernandez de la Vega, Constanza Mariel |
author_facet |
Sanchez Fernandez de la Vega, Constanza Mariel Rial, Diego Fernando |
author_role |
author |
author2 |
Rial, Diego Fernando |
author2_role |
author |
dc.subject.none.fl_str_mv |
NOISE IMMUNITY NONLINEAR SCHRÖDINGER EQUATION OPTICAL FIBERS OPTIMAL CONTROL |
topic |
NOISE IMMUNITY NONLINEAR SCHRÖDINGER EQUATION OPTICAL FIBERS OPTIMAL CONTROL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider an optimal internal control problem for the cubic nonlinear Schrödinger (NLS) equation on the line. We prove well-posedness of the problem and existence of an optimal control. In addition, we show first-order optimality conditions. Also, the paper includes the proof of a smoothing effect for the non-homogeneous NLS, which is necessary to obtain the existence of an optimal control. Fil: Sanchez Fernandez de la Vega, Constanza Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Rial, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We consider an optimal internal control problem for the cubic nonlinear Schrödinger (NLS) equation on the line. We prove well-posedness of the problem and existence of an optimal control. In addition, we show first-order optimality conditions. Also, the paper includes the proof of a smoothing effect for the non-homogeneous NLS, which is necessary to obtain the existence of an optimal control. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88477 Sanchez Fernandez de la Vega, Constanza Mariel; Rial, Diego Fernando; Optimal distributed control problem for cubic nonlinear Schrödinger equation; Springer London Ltd; Mathematics Of Control Signals And Systems; 30; 4; 12-2018; 1-24 0932-4194 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/88477 |
identifier_str_mv |
Sanchez Fernandez de la Vega, Constanza Mariel; Rial, Diego Fernando; Optimal distributed control problem for cubic nonlinear Schrödinger equation; Springer London Ltd; Mathematics Of Control Signals And Systems; 30; 4; 12-2018; 1-24 0932-4194 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00498-018-0222-4 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00498-018-0222-4 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer London Ltd |
publisher.none.fl_str_mv |
Springer London Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268815247802368 |
score |
13.13397 |