Order Lot Sizing: Insights from Lattice Gas-Type Model
- Autores
- Mieras, Margarita Miguelina; Tobares, Tania Daiana; Sanchez Varretti, Fabricio Orlando; Ramirez Pastor, Antonio Jose
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this study, we introduce a novel interdisciplinary framework that applies concepts from statistical physics, specifically lattice-gas models, to the classical order lot-sizing problem in supply chain management. Traditional methods often rely on heuristic or deterministic approaches, which may fail to capture the inherently probabilistic and dynamic nature of decision-making across multiple periods. Drawing on structural parallels between inventory decisions and adsorption phenomena in physical systems, we constructed a mapping that represented order placements as particles on a lattice, governed by an energy function analogous to thermodynamic potentials. This formulation allowed us to employ analytical tools from statistical mechanics to identify optimal ordering strategies via the minimization of a free energy functional. Our approach not only sheds new light on the structural characteristics of optimal planning but also introduces the concept of configurational entropy as a measure of decision variability and robustness. Numerical simulations and analytical approximations demonstrate the efficacy of the lattice gas model in capturing key features of the problem and suggest promising avenues for extending the framework to more complex settings, including multi-item systems and time-varying demand. This work represents a significant step toward bridging physical sciences with supply chain optimization, offering a robust theoretical foundation for both future research and practical applications.
Fil: Mieras, Margarita Miguelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Tobares, Tania Daiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Sanchez Varretti, Fabricio Orlando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina - Materia
-
optimization
order lot-sizing problem
lattice gas model - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/276561
Ver los metadatos del registro completo
| id |
CONICETDig_67e3a2dbe13842e5306df5a3dac13961 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/276561 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Order Lot Sizing: Insights from Lattice Gas-Type ModelMieras, Margarita MiguelinaTobares, Tania DaianaSanchez Varretti, Fabricio OrlandoRamirez Pastor, Antonio Joseoptimizationorder lot-sizing problemlattice gas modelhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this study, we introduce a novel interdisciplinary framework that applies concepts from statistical physics, specifically lattice-gas models, to the classical order lot-sizing problem in supply chain management. Traditional methods often rely on heuristic or deterministic approaches, which may fail to capture the inherently probabilistic and dynamic nature of decision-making across multiple periods. Drawing on structural parallels between inventory decisions and adsorption phenomena in physical systems, we constructed a mapping that represented order placements as particles on a lattice, governed by an energy function analogous to thermodynamic potentials. This formulation allowed us to employ analytical tools from statistical mechanics to identify optimal ordering strategies via the minimization of a free energy functional. Our approach not only sheds new light on the structural characteristics of optimal planning but also introduces the concept of configurational entropy as a measure of decision variability and robustness. Numerical simulations and analytical approximations demonstrate the efficacy of the lattice gas model in capturing key features of the problem and suggest promising avenues for extending the framework to more complex settings, including multi-item systems and time-varying demand. This work represents a significant step toward bridging physical sciences with supply chain optimization, offering a robust theoretical foundation for both future research and practical applications.Fil: Mieras, Margarita Miguelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Tobares, Tania Daiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Sanchez Varretti, Fabricio Orlando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaMolecular Diversity Preservation International2025-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/276561Mieras, Margarita Miguelina; Tobares, Tania Daiana; Sanchez Varretti, Fabricio Orlando; Ramirez Pastor, Antonio Jose; Order Lot Sizing: Insights from Lattice Gas-Type Model; Molecular Diversity Preservation International; Entropy; 27; 8; 7-2025; 1-201099-4300CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/27/8/774info:eu-repo/semantics/altIdentifier/doi/10.3390/e27080774info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T14:58:24Zoai:ri.conicet.gov.ar:11336/276561instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 14:58:24.989CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Order Lot Sizing: Insights from Lattice Gas-Type Model |
| title |
Order Lot Sizing: Insights from Lattice Gas-Type Model |
| spellingShingle |
Order Lot Sizing: Insights from Lattice Gas-Type Model Mieras, Margarita Miguelina optimization order lot-sizing problem lattice gas model |
| title_short |
Order Lot Sizing: Insights from Lattice Gas-Type Model |
| title_full |
Order Lot Sizing: Insights from Lattice Gas-Type Model |
| title_fullStr |
Order Lot Sizing: Insights from Lattice Gas-Type Model |
| title_full_unstemmed |
Order Lot Sizing: Insights from Lattice Gas-Type Model |
| title_sort |
Order Lot Sizing: Insights from Lattice Gas-Type Model |
| dc.creator.none.fl_str_mv |
Mieras, Margarita Miguelina Tobares, Tania Daiana Sanchez Varretti, Fabricio Orlando Ramirez Pastor, Antonio Jose |
| author |
Mieras, Margarita Miguelina |
| author_facet |
Mieras, Margarita Miguelina Tobares, Tania Daiana Sanchez Varretti, Fabricio Orlando Ramirez Pastor, Antonio Jose |
| author_role |
author |
| author2 |
Tobares, Tania Daiana Sanchez Varretti, Fabricio Orlando Ramirez Pastor, Antonio Jose |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
optimization order lot-sizing problem lattice gas model |
| topic |
optimization order lot-sizing problem lattice gas model |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this study, we introduce a novel interdisciplinary framework that applies concepts from statistical physics, specifically lattice-gas models, to the classical order lot-sizing problem in supply chain management. Traditional methods often rely on heuristic or deterministic approaches, which may fail to capture the inherently probabilistic and dynamic nature of decision-making across multiple periods. Drawing on structural parallels between inventory decisions and adsorption phenomena in physical systems, we constructed a mapping that represented order placements as particles on a lattice, governed by an energy function analogous to thermodynamic potentials. This formulation allowed us to employ analytical tools from statistical mechanics to identify optimal ordering strategies via the minimization of a free energy functional. Our approach not only sheds new light on the structural characteristics of optimal planning but also introduces the concept of configurational entropy as a measure of decision variability and robustness. Numerical simulations and analytical approximations demonstrate the efficacy of the lattice gas model in capturing key features of the problem and suggest promising avenues for extending the framework to more complex settings, including multi-item systems and time-varying demand. This work represents a significant step toward bridging physical sciences with supply chain optimization, offering a robust theoretical foundation for both future research and practical applications. Fil: Mieras, Margarita Miguelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina Fil: Tobares, Tania Daiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina Fil: Sanchez Varretti, Fabricio Orlando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina |
| description |
In this study, we introduce a novel interdisciplinary framework that applies concepts from statistical physics, specifically lattice-gas models, to the classical order lot-sizing problem in supply chain management. Traditional methods often rely on heuristic or deterministic approaches, which may fail to capture the inherently probabilistic and dynamic nature of decision-making across multiple periods. Drawing on structural parallels between inventory decisions and adsorption phenomena in physical systems, we constructed a mapping that represented order placements as particles on a lattice, governed by an energy function analogous to thermodynamic potentials. This formulation allowed us to employ analytical tools from statistical mechanics to identify optimal ordering strategies via the minimization of a free energy functional. Our approach not only sheds new light on the structural characteristics of optimal planning but also introduces the concept of configurational entropy as a measure of decision variability and robustness. Numerical simulations and analytical approximations demonstrate the efficacy of the lattice gas model in capturing key features of the problem and suggest promising avenues for extending the framework to more complex settings, including multi-item systems and time-varying demand. This work represents a significant step toward bridging physical sciences with supply chain optimization, offering a robust theoretical foundation for both future research and practical applications. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-07 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/276561 Mieras, Margarita Miguelina; Tobares, Tania Daiana; Sanchez Varretti, Fabricio Orlando; Ramirez Pastor, Antonio Jose; Order Lot Sizing: Insights from Lattice Gas-Type Model; Molecular Diversity Preservation International; Entropy; 27; 8; 7-2025; 1-20 1099-4300 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/276561 |
| identifier_str_mv |
Mieras, Margarita Miguelina; Tobares, Tania Daiana; Sanchez Varretti, Fabricio Orlando; Ramirez Pastor, Antonio Jose; Order Lot Sizing: Insights from Lattice Gas-Type Model; Molecular Diversity Preservation International; Entropy; 27; 8; 7-2025; 1-20 1099-4300 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/27/8/774 info:eu-repo/semantics/altIdentifier/doi/10.3390/e27080774 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
| publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335882396237824 |
| score |
12.952241 |