The single-item lot-sizing polytope with continuous start-up costs and uniform production capacity
- Autores
- Escalante, Mariana Silvina; Marenco, Javier; Varaldo, Maria del Carmen
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we consider the uniform capacitated single-item single-machine lot-sizing problem with continuous start-up costs. A continuous start-up cost is generated in a period whenever there is a nonzero production in the period and the production capacity in the previous period is not saturated. This concept of start-up does not correspond to the standard (discrete) start-up considered in previous models, thus motivating a polyhedral study of this problem. In this work we explore a natural integer programming formulation for this problem. We consider the polytope obtained as convex hull of the feasible points in this problem. We state some general properties, study whether the model constraints define facets, and present an exponentially-sized family of valid inequalities for it. We analyze the structure of the extreme points of this convex hull, their adjacency and bounds for the polytope diameter. Finally, we study the particular case when the demands are high enough in order to require production in all the periods. We provide a complete description of the convex hull of feasible solutions in this case and show that all the inequalities in this description are separable in polynomial time, thus proving its polynomial time solvability.
Fil: Escalante, Mariana Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingenieria y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matematica; Argentina
Fil: Marenco, Javier. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Varaldo, Maria del Carmen. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingenieria y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matematica; Argentina - Materia
-
Lot-Sizing
Continuous Start-Up
Polyhedral Combinatorics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/13341
Ver los metadatos del registro completo
id |
CONICETDig_855cdf349cc06b7e5fd04414946574f4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/13341 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The single-item lot-sizing polytope with continuous start-up costs and uniform production capacityEscalante, Mariana SilvinaMarenco, JavierVaraldo, Maria del CarmenLot-SizingContinuous Start-UpPolyhedral Combinatoricshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we consider the uniform capacitated single-item single-machine lot-sizing problem with continuous start-up costs. A continuous start-up cost is generated in a period whenever there is a nonzero production in the period and the production capacity in the previous period is not saturated. This concept of start-up does not correspond to the standard (discrete) start-up considered in previous models, thus motivating a polyhedral study of this problem. In this work we explore a natural integer programming formulation for this problem. We consider the polytope obtained as convex hull of the feasible points in this problem. We state some general properties, study whether the model constraints define facets, and present an exponentially-sized family of valid inequalities for it. We analyze the structure of the extreme points of this convex hull, their adjacency and bounds for the polytope diameter. Finally, we study the particular case when the demands are high enough in order to require production in all the periods. We provide a complete description of the convex hull of feasible solutions in this case and show that all the inequalities in this description are separable in polynomial time, thus proving its polynomial time solvability.Fil: Escalante, Mariana Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingenieria y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matematica; ArgentinaFil: Marenco, Javier. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Varaldo, Maria del Carmen. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingenieria y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matematica; ArgentinaSpringer2015-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13341Escalante, Mariana Silvina; Marenco, Javier; Varaldo, Maria del Carmen; The single-item lot-sizing polytope with continuous start-up costs and uniform production capacity; Springer; Annals Of Operations Research; 235; 1; 12-2015; 233–2580254-53301572-9338enginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10479-015-1915-4info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs10479-015-1915-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:13Zoai:ri.conicet.gov.ar:11336/13341instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:13.562CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The single-item lot-sizing polytope with continuous start-up costs and uniform production capacity |
title |
The single-item lot-sizing polytope with continuous start-up costs and uniform production capacity |
spellingShingle |
The single-item lot-sizing polytope with continuous start-up costs and uniform production capacity Escalante, Mariana Silvina Lot-Sizing Continuous Start-Up Polyhedral Combinatorics |
title_short |
The single-item lot-sizing polytope with continuous start-up costs and uniform production capacity |
title_full |
The single-item lot-sizing polytope with continuous start-up costs and uniform production capacity |
title_fullStr |
The single-item lot-sizing polytope with continuous start-up costs and uniform production capacity |
title_full_unstemmed |
The single-item lot-sizing polytope with continuous start-up costs and uniform production capacity |
title_sort |
The single-item lot-sizing polytope with continuous start-up costs and uniform production capacity |
dc.creator.none.fl_str_mv |
Escalante, Mariana Silvina Marenco, Javier Varaldo, Maria del Carmen |
author |
Escalante, Mariana Silvina |
author_facet |
Escalante, Mariana Silvina Marenco, Javier Varaldo, Maria del Carmen |
author_role |
author |
author2 |
Marenco, Javier Varaldo, Maria del Carmen |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Lot-Sizing Continuous Start-Up Polyhedral Combinatorics |
topic |
Lot-Sizing Continuous Start-Up Polyhedral Combinatorics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work we consider the uniform capacitated single-item single-machine lot-sizing problem with continuous start-up costs. A continuous start-up cost is generated in a period whenever there is a nonzero production in the period and the production capacity in the previous period is not saturated. This concept of start-up does not correspond to the standard (discrete) start-up considered in previous models, thus motivating a polyhedral study of this problem. In this work we explore a natural integer programming formulation for this problem. We consider the polytope obtained as convex hull of the feasible points in this problem. We state some general properties, study whether the model constraints define facets, and present an exponentially-sized family of valid inequalities for it. We analyze the structure of the extreme points of this convex hull, their adjacency and bounds for the polytope diameter. Finally, we study the particular case when the demands are high enough in order to require production in all the periods. We provide a complete description of the convex hull of feasible solutions in this case and show that all the inequalities in this description are separable in polynomial time, thus proving its polynomial time solvability. Fil: Escalante, Mariana Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingenieria y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matematica; Argentina Fil: Marenco, Javier. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina Fil: Varaldo, Maria del Carmen. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingenieria y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matematica; Argentina |
description |
In this work we consider the uniform capacitated single-item single-machine lot-sizing problem with continuous start-up costs. A continuous start-up cost is generated in a period whenever there is a nonzero production in the period and the production capacity in the previous period is not saturated. This concept of start-up does not correspond to the standard (discrete) start-up considered in previous models, thus motivating a polyhedral study of this problem. In this work we explore a natural integer programming formulation for this problem. We consider the polytope obtained as convex hull of the feasible points in this problem. We state some general properties, study whether the model constraints define facets, and present an exponentially-sized family of valid inequalities for it. We analyze the structure of the extreme points of this convex hull, their adjacency and bounds for the polytope diameter. Finally, we study the particular case when the demands are high enough in order to require production in all the periods. We provide a complete description of the convex hull of feasible solutions in this case and show that all the inequalities in this description are separable in polynomial time, thus proving its polynomial time solvability. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/13341 Escalante, Mariana Silvina; Marenco, Javier; Varaldo, Maria del Carmen; The single-item lot-sizing polytope with continuous start-up costs and uniform production capacity; Springer; Annals Of Operations Research; 235; 1; 12-2015; 233–258 0254-5330 1572-9338 |
url |
http://hdl.handle.net/11336/13341 |
identifier_str_mv |
Escalante, Mariana Silvina; Marenco, Javier; Varaldo, Maria del Carmen; The single-item lot-sizing polytope with continuous start-up costs and uniform production capacity; Springer; Annals Of Operations Research; 235; 1; 12-2015; 233–258 0254-5330 1572-9338 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10479-015-1915-4 info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs10479-015-1915-4 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269994332717056 |
score |
13.13397 |