Simultaneous lot sizing and scheduling of multistage batch processes handling multiple orders per product
- Autores
- Marchetti, Pablo Andres; Mendez, Carlos Alberto; Cerda, Jaime
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A pair of precedence-based continuous-time formulations addressing the combined lot sizing and scheduling of order-driven multistage batch facilities is presented. The proposed mixed-integer linear programming (MILP) models can handle multiple orders per product with different delivery dates, variable processing times, and sequence-dependent changeovers. As each order may be filled by one or more batches, enough batches for each order ensuring optimality are initially defined. The two monolithic formulations are intended for sequential batch processes where batch integrity is preserved throughout the entire production system. However, lots of final products can be split to satisfy two or more orders. One of the approaches is based on a detailed MILP formulation allocating individual batches to units and ordering them in every unit. In contrast, the second methodology is specially designed for large scheduling problems. It first gathers batches for the same order into clusters, and then assigns clusters to units and sequences groups of batches in every unit. The larger the number of groups, the more rigorous is the cluster-based formulation. Alternative sequencing constraints based on reliable assumptions were also tested. Several examples involving up to 92 batches have been successfully solved using one or both formulations.
Fil: Marchetti, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
Fil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
Fil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina - Materia
-
Batch Processes
Scheduling
Lot-Sizing
Optimization
Integer Programming - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/10897
Ver los metadatos del registro completo
id |
CONICETDig_7df7bdaa3f83f184143867eaa7aee0c2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/10897 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Simultaneous lot sizing and scheduling of multistage batch processes handling multiple orders per productMarchetti, Pablo AndresMendez, Carlos AlbertoCerda, JaimeBatch ProcessesSchedulingLot-SizingOptimizationInteger Programminghttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2A pair of precedence-based continuous-time formulations addressing the combined lot sizing and scheduling of order-driven multistage batch facilities is presented. The proposed mixed-integer linear programming (MILP) models can handle multiple orders per product with different delivery dates, variable processing times, and sequence-dependent changeovers. As each order may be filled by one or more batches, enough batches for each order ensuring optimality are initially defined. The two monolithic formulations are intended for sequential batch processes where batch integrity is preserved throughout the entire production system. However, lots of final products can be split to satisfy two or more orders. One of the approaches is based on a detailed MILP formulation allocating individual batches to units and ordering them in every unit. In contrast, the second methodology is specially designed for large scheduling problems. It first gathers batches for the same order into clusters, and then assigns clusters to units and sequences groups of batches in every unit. The larger the number of groups, the more rigorous is the cluster-based formulation. Alternative sequencing constraints based on reliable assumptions were also tested. Several examples involving up to 92 batches have been successfully solved using one or both formulations.Fil: Marchetti, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaFil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaFil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaAmerican Chemical Society2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/10897Marchetti, Pablo Andres; Mendez, Carlos Alberto; Cerda, Jaime; Simultaneous lot sizing and scheduling of multistage batch processes handling multiple orders per product; American Chemical Society; Industrial & Engineering Chemical Research; 51; 16; 3-2012; 5762-57800888-5885enginfo:eu-repo/semantics/altIdentifier/doi/10.1021/ie202275yinfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ie202275yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:21Zoai:ri.conicet.gov.ar:11336/10897instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:21.878CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Simultaneous lot sizing and scheduling of multistage batch processes handling multiple orders per product |
title |
Simultaneous lot sizing and scheduling of multistage batch processes handling multiple orders per product |
spellingShingle |
Simultaneous lot sizing and scheduling of multistage batch processes handling multiple orders per product Marchetti, Pablo Andres Batch Processes Scheduling Lot-Sizing Optimization Integer Programming |
title_short |
Simultaneous lot sizing and scheduling of multistage batch processes handling multiple orders per product |
title_full |
Simultaneous lot sizing and scheduling of multistage batch processes handling multiple orders per product |
title_fullStr |
Simultaneous lot sizing and scheduling of multistage batch processes handling multiple orders per product |
title_full_unstemmed |
Simultaneous lot sizing and scheduling of multistage batch processes handling multiple orders per product |
title_sort |
Simultaneous lot sizing and scheduling of multistage batch processes handling multiple orders per product |
dc.creator.none.fl_str_mv |
Marchetti, Pablo Andres Mendez, Carlos Alberto Cerda, Jaime |
author |
Marchetti, Pablo Andres |
author_facet |
Marchetti, Pablo Andres Mendez, Carlos Alberto Cerda, Jaime |
author_role |
author |
author2 |
Mendez, Carlos Alberto Cerda, Jaime |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Batch Processes Scheduling Lot-Sizing Optimization Integer Programming |
topic |
Batch Processes Scheduling Lot-Sizing Optimization Integer Programming |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
A pair of precedence-based continuous-time formulations addressing the combined lot sizing and scheduling of order-driven multistage batch facilities is presented. The proposed mixed-integer linear programming (MILP) models can handle multiple orders per product with different delivery dates, variable processing times, and sequence-dependent changeovers. As each order may be filled by one or more batches, enough batches for each order ensuring optimality are initially defined. The two monolithic formulations are intended for sequential batch processes where batch integrity is preserved throughout the entire production system. However, lots of final products can be split to satisfy two or more orders. One of the approaches is based on a detailed MILP formulation allocating individual batches to units and ordering them in every unit. In contrast, the second methodology is specially designed for large scheduling problems. It first gathers batches for the same order into clusters, and then assigns clusters to units and sequences groups of batches in every unit. The larger the number of groups, the more rigorous is the cluster-based formulation. Alternative sequencing constraints based on reliable assumptions were also tested. Several examples involving up to 92 batches have been successfully solved using one or both formulations. Fil: Marchetti, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina Fil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina Fil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina |
description |
A pair of precedence-based continuous-time formulations addressing the combined lot sizing and scheduling of order-driven multistage batch facilities is presented. The proposed mixed-integer linear programming (MILP) models can handle multiple orders per product with different delivery dates, variable processing times, and sequence-dependent changeovers. As each order may be filled by one or more batches, enough batches for each order ensuring optimality are initially defined. The two monolithic formulations are intended for sequential batch processes where batch integrity is preserved throughout the entire production system. However, lots of final products can be split to satisfy two or more orders. One of the approaches is based on a detailed MILP formulation allocating individual batches to units and ordering them in every unit. In contrast, the second methodology is specially designed for large scheduling problems. It first gathers batches for the same order into clusters, and then assigns clusters to units and sequences groups of batches in every unit. The larger the number of groups, the more rigorous is the cluster-based formulation. Alternative sequencing constraints based on reliable assumptions were also tested. Several examples involving up to 92 batches have been successfully solved using one or both formulations. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/10897 Marchetti, Pablo Andres; Mendez, Carlos Alberto; Cerda, Jaime; Simultaneous lot sizing and scheduling of multistage batch processes handling multiple orders per product; American Chemical Society; Industrial & Engineering Chemical Research; 51; 16; 3-2012; 5762-5780 0888-5885 |
url |
http://hdl.handle.net/11336/10897 |
identifier_str_mv |
Marchetti, Pablo Andres; Mendez, Carlos Alberto; Cerda, Jaime; Simultaneous lot sizing and scheduling of multistage batch processes handling multiple orders per product; American Chemical Society; Industrial & Engineering Chemical Research; 51; 16; 3-2012; 5762-5780 0888-5885 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1021/ie202275y info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ie202275y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268853954936832 |
score |
13.13397 |