Geometry and analytic boundaries of Marcinkiewicz sequence spaces
- Autores
- Boyd, Christopher; Lassalle, Silvia Beatriz
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We investigate the geometric structure of the unit ball of the Marcinkiewicz sequence space Graphic, giving characterizations of its real and complex extreme points and of the exposed points in terms of the symbol Ψ. Using our knowledge of the geometry of Graphic we then give necessary and sufficient conditions for a subset of Graphic to be a boundary for Graphic, the algebra of functions which are uniformly continuous on Graphic and holomorphic on the interior of Graphic. We show that it is possible for the set of peak points of Graphic to be a boundary for Graphic yet for Graphic not to have a Šilov boundary in the sense of Globevnik.
Fil: Boyd, Christopher. University College Dublin; Irlanda
Fil: Lassalle, Silvia Beatriz. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Silov Boundaries
Analitic Functions
Marcinkiewicz Sequence Spaces - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15073
Ver los metadatos del registro completo
| id |
CONICETDig_67d843189dc7369f7efdcd62528ace47 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15073 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Geometry and analytic boundaries of Marcinkiewicz sequence spacesBoyd, ChristopherLassalle, Silvia BeatrizSilov BoundariesAnalitic FunctionsMarcinkiewicz Sequence Spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We investigate the geometric structure of the unit ball of the Marcinkiewicz sequence space Graphic, giving characterizations of its real and complex extreme points and of the exposed points in terms of the symbol Ψ. Using our knowledge of the geometry of Graphic we then give necessary and sufficient conditions for a subset of Graphic to be a boundary for Graphic, the algebra of functions which are uniformly continuous on Graphic and holomorphic on the interior of Graphic. We show that it is possible for the set of peak points of Graphic to be a boundary for Graphic yet for Graphic not to have a Šilov boundary in the sense of Globevnik.Fil: Boyd, Christopher. University College Dublin; IrlandaFil: Lassalle, Silvia Beatriz. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaOxford University Press2010-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15073Boyd, Christopher; Lassalle, Silvia Beatriz; Geometry and analytic boundaries of Marcinkiewicz sequence spaces; Oxford University Press; Quarterly Journal Of Mathematics; 61; 2; 6-2010; 183-1970033-5606enginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/qjmath/article/61/2/183/1558618/GEOMETRY-AND-ANALYTIC-BOUNDARIES-OF-MARCINKIEWICZinfo:eu-repo/semantics/altIdentifier/doi/10.1093/qmath/han037info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:32:50Zoai:ri.conicet.gov.ar:11336/15073instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:32:50.353CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Geometry and analytic boundaries of Marcinkiewicz sequence spaces |
| title |
Geometry and analytic boundaries of Marcinkiewicz sequence spaces |
| spellingShingle |
Geometry and analytic boundaries of Marcinkiewicz sequence spaces Boyd, Christopher Silov Boundaries Analitic Functions Marcinkiewicz Sequence Spaces |
| title_short |
Geometry and analytic boundaries of Marcinkiewicz sequence spaces |
| title_full |
Geometry and analytic boundaries of Marcinkiewicz sequence spaces |
| title_fullStr |
Geometry and analytic boundaries of Marcinkiewicz sequence spaces |
| title_full_unstemmed |
Geometry and analytic boundaries of Marcinkiewicz sequence spaces |
| title_sort |
Geometry and analytic boundaries of Marcinkiewicz sequence spaces |
| dc.creator.none.fl_str_mv |
Boyd, Christopher Lassalle, Silvia Beatriz |
| author |
Boyd, Christopher |
| author_facet |
Boyd, Christopher Lassalle, Silvia Beatriz |
| author_role |
author |
| author2 |
Lassalle, Silvia Beatriz |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Silov Boundaries Analitic Functions Marcinkiewicz Sequence Spaces |
| topic |
Silov Boundaries Analitic Functions Marcinkiewicz Sequence Spaces |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We investigate the geometric structure of the unit ball of the Marcinkiewicz sequence space Graphic, giving characterizations of its real and complex extreme points and of the exposed points in terms of the symbol Ψ. Using our knowledge of the geometry of Graphic we then give necessary and sufficient conditions for a subset of Graphic to be a boundary for Graphic, the algebra of functions which are uniformly continuous on Graphic and holomorphic on the interior of Graphic. We show that it is possible for the set of peak points of Graphic to be a boundary for Graphic yet for Graphic not to have a Šilov boundary in the sense of Globevnik. Fil: Boyd, Christopher. University College Dublin; Irlanda Fil: Lassalle, Silvia Beatriz. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
| description |
We investigate the geometric structure of the unit ball of the Marcinkiewicz sequence space Graphic, giving characterizations of its real and complex extreme points and of the exposed points in terms of the symbol Ψ. Using our knowledge of the geometry of Graphic we then give necessary and sufficient conditions for a subset of Graphic to be a boundary for Graphic, the algebra of functions which are uniformly continuous on Graphic and holomorphic on the interior of Graphic. We show that it is possible for the set of peak points of Graphic to be a boundary for Graphic yet for Graphic not to have a Šilov boundary in the sense of Globevnik. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15073 Boyd, Christopher; Lassalle, Silvia Beatriz; Geometry and analytic boundaries of Marcinkiewicz sequence spaces; Oxford University Press; Quarterly Journal Of Mathematics; 61; 2; 6-2010; 183-197 0033-5606 |
| url |
http://hdl.handle.net/11336/15073 |
| identifier_str_mv |
Boyd, Christopher; Lassalle, Silvia Beatriz; Geometry and analytic boundaries of Marcinkiewicz sequence spaces; Oxford University Press; Quarterly Journal Of Mathematics; 61; 2; 6-2010; 183-197 0033-5606 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/qjmath/article/61/2/183/1558618/GEOMETRY-AND-ANALYTIC-BOUNDARIES-OF-MARCINKIEWICZ info:eu-repo/semantics/altIdentifier/doi/10.1093/qmath/han037 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Oxford University Press |
| publisher.none.fl_str_mv |
Oxford University Press |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781940671184896 |
| score |
12.982451 |