Geometry and analytic boundaries of Marcinkiewicz sequence spaces

Autores
Boyd, Christopher; Lassalle, Silvia Beatriz
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We investigate the geometric structure of the unit ball of the Marcinkiewicz sequence space Graphic, giving characterizations of its real and complex extreme points and of the exposed points in terms of the symbol Ψ. Using our knowledge of the geometry of Graphic we then give necessary and sufficient conditions for a subset of Graphic to be a boundary for Graphic, the algebra of functions which are uniformly continuous on Graphic and holomorphic on the interior of Graphic. We show that it is possible for the set of peak points of Graphic to be a boundary for Graphic yet for Graphic not to have a Šilov boundary in the sense of Globevnik.
Fil: Boyd, Christopher. University College Dublin; Irlanda
Fil: Lassalle, Silvia Beatriz. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
Silov Boundaries
Analitic Functions
Marcinkiewicz Sequence Spaces
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/15073

id CONICETDig_67d843189dc7369f7efdcd62528ace47
oai_identifier_str oai:ri.conicet.gov.ar:11336/15073
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Geometry and analytic boundaries of Marcinkiewicz sequence spacesBoyd, ChristopherLassalle, Silvia BeatrizSilov BoundariesAnalitic FunctionsMarcinkiewicz Sequence Spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We investigate the geometric structure of the unit ball of the Marcinkiewicz sequence space Graphic, giving characterizations of its real and complex extreme points and of the exposed points in terms of the symbol Ψ. Using our knowledge of the geometry of Graphic we then give necessary and sufficient conditions for a subset of Graphic to be a boundary for Graphic, the algebra of functions which are uniformly continuous on Graphic and holomorphic on the interior of Graphic. We show that it is possible for the set of peak points of Graphic to be a boundary for Graphic yet for Graphic not to have a Šilov boundary in the sense of Globevnik.Fil: Boyd, Christopher. University College Dublin; IrlandaFil: Lassalle, Silvia Beatriz. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaOxford University Press2010-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15073Boyd, Christopher; Lassalle, Silvia Beatriz; Geometry and analytic boundaries of Marcinkiewicz sequence spaces; Oxford University Press; Quarterly Journal Of Mathematics; 61; 2; 6-2010; 183-1970033-5606enginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/qjmath/article/61/2/183/1558618/GEOMETRY-AND-ANALYTIC-BOUNDARIES-OF-MARCINKIEWICZinfo:eu-repo/semantics/altIdentifier/doi/10.1093/qmath/han037info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:32:50Zoai:ri.conicet.gov.ar:11336/15073instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:32:50.353CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Geometry and analytic boundaries of Marcinkiewicz sequence spaces
title Geometry and analytic boundaries of Marcinkiewicz sequence spaces
spellingShingle Geometry and analytic boundaries of Marcinkiewicz sequence spaces
Boyd, Christopher
Silov Boundaries
Analitic Functions
Marcinkiewicz Sequence Spaces
title_short Geometry and analytic boundaries of Marcinkiewicz sequence spaces
title_full Geometry and analytic boundaries of Marcinkiewicz sequence spaces
title_fullStr Geometry and analytic boundaries of Marcinkiewicz sequence spaces
title_full_unstemmed Geometry and analytic boundaries of Marcinkiewicz sequence spaces
title_sort Geometry and analytic boundaries of Marcinkiewicz sequence spaces
dc.creator.none.fl_str_mv Boyd, Christopher
Lassalle, Silvia Beatriz
author Boyd, Christopher
author_facet Boyd, Christopher
Lassalle, Silvia Beatriz
author_role author
author2 Lassalle, Silvia Beatriz
author2_role author
dc.subject.none.fl_str_mv Silov Boundaries
Analitic Functions
Marcinkiewicz Sequence Spaces
topic Silov Boundaries
Analitic Functions
Marcinkiewicz Sequence Spaces
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We investigate the geometric structure of the unit ball of the Marcinkiewicz sequence space Graphic, giving characterizations of its real and complex extreme points and of the exposed points in terms of the symbol Ψ. Using our knowledge of the geometry of Graphic we then give necessary and sufficient conditions for a subset of Graphic to be a boundary for Graphic, the algebra of functions which are uniformly continuous on Graphic and holomorphic on the interior of Graphic. We show that it is possible for the set of peak points of Graphic to be a boundary for Graphic yet for Graphic not to have a Šilov boundary in the sense of Globevnik.
Fil: Boyd, Christopher. University College Dublin; Irlanda
Fil: Lassalle, Silvia Beatriz. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description We investigate the geometric structure of the unit ball of the Marcinkiewicz sequence space Graphic, giving characterizations of its real and complex extreme points and of the exposed points in terms of the symbol Ψ. Using our knowledge of the geometry of Graphic we then give necessary and sufficient conditions for a subset of Graphic to be a boundary for Graphic, the algebra of functions which are uniformly continuous on Graphic and holomorphic on the interior of Graphic. We show that it is possible for the set of peak points of Graphic to be a boundary for Graphic yet for Graphic not to have a Šilov boundary in the sense of Globevnik.
publishDate 2010
dc.date.none.fl_str_mv 2010-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/15073
Boyd, Christopher; Lassalle, Silvia Beatriz; Geometry and analytic boundaries of Marcinkiewicz sequence spaces; Oxford University Press; Quarterly Journal Of Mathematics; 61; 2; 6-2010; 183-197
0033-5606
url http://hdl.handle.net/11336/15073
identifier_str_mv Boyd, Christopher; Lassalle, Silvia Beatriz; Geometry and analytic boundaries of Marcinkiewicz sequence spaces; Oxford University Press; Quarterly Journal Of Mathematics; 61; 2; 6-2010; 183-197
0033-5606
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/qjmath/article/61/2/183/1558618/GEOMETRY-AND-ANALYTIC-BOUNDARIES-OF-MARCINKIEWICZ
info:eu-repo/semantics/altIdentifier/doi/10.1093/qmath/han037
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781940671184896
score 12.982451