A minimum problem with free boundary in Orlicz spaces
- Autores
- Martinez, Sandra Rita; Wolanski, Noemi Irene
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider the minimization problem: int_Omega ?G(|nabla u), dx +|{u>0}|) in u-u_0 in W_0^{1,G}(Omega) for a given u_0 in W_0^{1,G}(Omega). The conditions on the function G allow for different behavior at 0 and infinity. We prove that every solution is locally Lipschitz continuous, that it is a solution to a free boundary problem and that the free boundary, is a regular surface. Also, we introduce the notion of weak solution to the free boundary problem solved by the minimizers and prove the Lipschitz regularity of the weak solutions and the C^{1,alpha} regularity of their free boundaries near flat free boundary points.
Fil: Martinez, Sandra Rita. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
FREE BOUNDARIES
ORLICZ SPACES
MINIMIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/275189
Ver los metadatos del registro completo
| id |
CONICETDig_fec966869fd84a8b9a820092865b6779 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/275189 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A minimum problem with free boundary in Orlicz spacesMartinez, Sandra RitaWolanski, Noemi IreneFREE BOUNDARIESORLICZ SPACESMINIMIZATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider the minimization problem: int_Omega ?G(|nabla u), dx +|{u>0}|) in u-u_0 in W_0^{1,G}(Omega) for a given u_0 in W_0^{1,G}(Omega). The conditions on the function G allow for different behavior at 0 and infinity. We prove that every solution is locally Lipschitz continuous, that it is a solution to a free boundary problem and that the free boundary, is a regular surface. Also, we introduce the notion of weak solution to the free boundary problem solved by the minimizers and prove the Lipschitz regularity of the weak solutions and the C^{1,alpha} regularity of their free boundaries near flat free boundary points.Fil: Martinez, Sandra Rita. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAcademic Press Inc Elsevier Science2008-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/275189Martinez, Sandra Rita; Wolanski, Noemi Irene; A minimum problem with free boundary in Orlicz spaces; Academic Press Inc Elsevier Science; Advances in Mathematics; 218; 6; 5-2008; 1914-19710001-8708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2008.03.028info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870808000984?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-03T08:54:51Zoai:ri.conicet.gov.ar:11336/275189instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-03 08:54:51.36CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A minimum problem with free boundary in Orlicz spaces |
| title |
A minimum problem with free boundary in Orlicz spaces |
| spellingShingle |
A minimum problem with free boundary in Orlicz spaces Martinez, Sandra Rita FREE BOUNDARIES ORLICZ SPACES MINIMIZATION |
| title_short |
A minimum problem with free boundary in Orlicz spaces |
| title_full |
A minimum problem with free boundary in Orlicz spaces |
| title_fullStr |
A minimum problem with free boundary in Orlicz spaces |
| title_full_unstemmed |
A minimum problem with free boundary in Orlicz spaces |
| title_sort |
A minimum problem with free boundary in Orlicz spaces |
| dc.creator.none.fl_str_mv |
Martinez, Sandra Rita Wolanski, Noemi Irene |
| author |
Martinez, Sandra Rita |
| author_facet |
Martinez, Sandra Rita Wolanski, Noemi Irene |
| author_role |
author |
| author2 |
Wolanski, Noemi Irene |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
FREE BOUNDARIES ORLICZ SPACES MINIMIZATION |
| topic |
FREE BOUNDARIES ORLICZ SPACES MINIMIZATION |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We consider the minimization problem: int_Omega ?G(|nabla u), dx +|{u>0}|) in u-u_0 in W_0^{1,G}(Omega) for a given u_0 in W_0^{1,G}(Omega). The conditions on the function G allow for different behavior at 0 and infinity. We prove that every solution is locally Lipschitz continuous, that it is a solution to a free boundary problem and that the free boundary, is a regular surface. Also, we introduce the notion of weak solution to the free boundary problem solved by the minimizers and prove the Lipschitz regularity of the weak solutions and the C^{1,alpha} regularity of their free boundaries near flat free boundary points. Fil: Martinez, Sandra Rita. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
| description |
We consider the minimization problem: int_Omega ?G(|nabla u), dx +|{u>0}|) in u-u_0 in W_0^{1,G}(Omega) for a given u_0 in W_0^{1,G}(Omega). The conditions on the function G allow for different behavior at 0 and infinity. We prove that every solution is locally Lipschitz continuous, that it is a solution to a free boundary problem and that the free boundary, is a regular surface. Also, we introduce the notion of weak solution to the free boundary problem solved by the minimizers and prove the Lipschitz regularity of the weak solutions and the C^{1,alpha} regularity of their free boundaries near flat free boundary points. |
| publishDate |
2008 |
| dc.date.none.fl_str_mv |
2008-05 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/275189 Martinez, Sandra Rita; Wolanski, Noemi Irene; A minimum problem with free boundary in Orlicz spaces; Academic Press Inc Elsevier Science; Advances in Mathematics; 218; 6; 5-2008; 1914-1971 0001-8708 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/275189 |
| identifier_str_mv |
Martinez, Sandra Rita; Wolanski, Noemi Irene; A minimum problem with free boundary in Orlicz spaces; Academic Press Inc Elsevier Science; Advances in Mathematics; 218; 6; 5-2008; 1914-1971 0001-8708 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2008.03.028 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870808000984?via%3Dihub |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1850505056349061120 |
| score |
13.275514 |