A minimum problem with free boundary in Orlicz spaces

Autores
Martínez, S.; Wolanski, N.
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider the optimization problem of minimizing ∫Ω G (| ∇ u |) + λ χ{u > 0} d x in the class of functions W1, G (Ω) with u - φ0 ∈ W01, G (Ω), for a given φ0 ≥ 0 and bounded. W1, G (Ω) is the class of weakly differentiable functions with ∫Ω G (| ∇ u |) d x < ∞. The conditions on the function G allow for a different behavior at 0 and at ∞. We prove that every solution u is locally Lipschitz continuous, that it is a solution to a free boundary problem and that the free boundary, Ω ∩ ∂ {u > 0}, is a regular surface. Also, we introduce the notion of weak solution to the free boundary problem solved by the minimizers and prove the Lipschitz regularity of the weak solutions and the C1, α regularity of their free boundaries near "flat" free boundary points. © 2008 Elsevier Inc. All rights reserved.
Fil:Martínez, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Adv. Math. 2008;218(6):1914-1971
Materia
Free boundaries
Minimization
Orlicz spaces
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00018708_v218_n6_p1914_Martinez

id BDUBAFCEN_376be9cb884233db8d69a2ffe5b6e9aa
oai_identifier_str paperaa:paper_00018708_v218_n6_p1914_Martinez
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling A minimum problem with free boundary in Orlicz spacesMartínez, S.Wolanski, N.Free boundariesMinimizationOrlicz spacesWe consider the optimization problem of minimizing ∫Ω G (| ∇ u |) + λ χ{u &gt; 0} d x in the class of functions W1, G (Ω) with u - φ0 ∈ W01, G (Ω), for a given φ0 ≥ 0 and bounded. W1, G (Ω) is the class of weakly differentiable functions with ∫Ω G (| ∇ u |) d x &lt; ∞. The conditions on the function G allow for a different behavior at 0 and at ∞. We prove that every solution u is locally Lipschitz continuous, that it is a solution to a free boundary problem and that the free boundary, Ω ∩ ∂ {u &gt; 0}, is a regular surface. Also, we introduce the notion of weak solution to the free boundary problem solved by the minimizers and prove the Lipschitz regularity of the weak solutions and the C1, α regularity of their free boundaries near "flat" free boundary points. © 2008 Elsevier Inc. All rights reserved.Fil:Martínez, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00018708_v218_n6_p1914_MartinezAdv. Math. 2008;218(6):1914-1971reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:09Zpaperaa:paper_00018708_v218_n6_p1914_MartinezInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:10.555Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv A minimum problem with free boundary in Orlicz spaces
title A minimum problem with free boundary in Orlicz spaces
spellingShingle A minimum problem with free boundary in Orlicz spaces
Martínez, S.
Free boundaries
Minimization
Orlicz spaces
title_short A minimum problem with free boundary in Orlicz spaces
title_full A minimum problem with free boundary in Orlicz spaces
title_fullStr A minimum problem with free boundary in Orlicz spaces
title_full_unstemmed A minimum problem with free boundary in Orlicz spaces
title_sort A minimum problem with free boundary in Orlicz spaces
dc.creator.none.fl_str_mv Martínez, S.
Wolanski, N.
author Martínez, S.
author_facet Martínez, S.
Wolanski, N.
author_role author
author2 Wolanski, N.
author2_role author
dc.subject.none.fl_str_mv Free boundaries
Minimization
Orlicz spaces
topic Free boundaries
Minimization
Orlicz spaces
dc.description.none.fl_txt_mv We consider the optimization problem of minimizing ∫Ω G (| ∇ u |) + λ χ{u &gt; 0} d x in the class of functions W1, G (Ω) with u - φ0 ∈ W01, G (Ω), for a given φ0 ≥ 0 and bounded. W1, G (Ω) is the class of weakly differentiable functions with ∫Ω G (| ∇ u |) d x &lt; ∞. The conditions on the function G allow for a different behavior at 0 and at ∞. We prove that every solution u is locally Lipschitz continuous, that it is a solution to a free boundary problem and that the free boundary, Ω ∩ ∂ {u &gt; 0}, is a regular surface. Also, we introduce the notion of weak solution to the free boundary problem solved by the minimizers and prove the Lipschitz regularity of the weak solutions and the C1, α regularity of their free boundaries near "flat" free boundary points. © 2008 Elsevier Inc. All rights reserved.
Fil:Martínez, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We consider the optimization problem of minimizing ∫Ω G (| ∇ u |) + λ χ{u &gt; 0} d x in the class of functions W1, G (Ω) with u - φ0 ∈ W01, G (Ω), for a given φ0 ≥ 0 and bounded. W1, G (Ω) is the class of weakly differentiable functions with ∫Ω G (| ∇ u |) d x &lt; ∞. The conditions on the function G allow for a different behavior at 0 and at ∞. We prove that every solution u is locally Lipschitz continuous, that it is a solution to a free boundary problem and that the free boundary, Ω ∩ ∂ {u &gt; 0}, is a regular surface. Also, we introduce the notion of weak solution to the free boundary problem solved by the minimizers and prove the Lipschitz regularity of the weak solutions and the C1, α regularity of their free boundaries near "flat" free boundary points. © 2008 Elsevier Inc. All rights reserved.
publishDate 2008
dc.date.none.fl_str_mv 2008
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00018708_v218_n6_p1914_Martinez
url http://hdl.handle.net/20.500.12110/paper_00018708_v218_n6_p1914_Martinez
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Adv. Math. 2008;218(6):1914-1971
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618740342194176
score 12.891075