A minimum problem with free boundary in Orlicz spaces
- Autores
- Martínez, S.; Wolanski, N.
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider the optimization problem of minimizing ∫Ω G (| ∇ u |) + λ χ{u > 0} d x in the class of functions W1, G (Ω) with u - φ0 ∈ W01, G (Ω), for a given φ0 ≥ 0 and bounded. W1, G (Ω) is the class of weakly differentiable functions with ∫Ω G (| ∇ u |) d x < ∞. The conditions on the function G allow for a different behavior at 0 and at ∞. We prove that every solution u is locally Lipschitz continuous, that it is a solution to a free boundary problem and that the free boundary, Ω ∩ ∂ {u > 0}, is a regular surface. Also, we introduce the notion of weak solution to the free boundary problem solved by the minimizers and prove the Lipschitz regularity of the weak solutions and the C1, α regularity of their free boundaries near "flat" free boundary points. © 2008 Elsevier Inc. All rights reserved.
Fil:Martínez, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Adv. Math. 2008;218(6):1914-1971
- Materia
-
Free boundaries
Minimization
Orlicz spaces - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00018708_v218_n6_p1914_Martinez
Ver los metadatos del registro completo
id |
BDUBAFCEN_376be9cb884233db8d69a2ffe5b6e9aa |
---|---|
oai_identifier_str |
paperaa:paper_00018708_v218_n6_p1914_Martinez |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
A minimum problem with free boundary in Orlicz spacesMartínez, S.Wolanski, N.Free boundariesMinimizationOrlicz spacesWe consider the optimization problem of minimizing ∫Ω G (| ∇ u |) + λ χ{u > 0} d x in the class of functions W1, G (Ω) with u - φ0 ∈ W01, G (Ω), for a given φ0 ≥ 0 and bounded. W1, G (Ω) is the class of weakly differentiable functions with ∫Ω G (| ∇ u |) d x < ∞. The conditions on the function G allow for a different behavior at 0 and at ∞. We prove that every solution u is locally Lipschitz continuous, that it is a solution to a free boundary problem and that the free boundary, Ω ∩ ∂ {u > 0}, is a regular surface. Also, we introduce the notion of weak solution to the free boundary problem solved by the minimizers and prove the Lipschitz regularity of the weak solutions and the C1, α regularity of their free boundaries near "flat" free boundary points. © 2008 Elsevier Inc. All rights reserved.Fil:Martínez, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00018708_v218_n6_p1914_MartinezAdv. Math. 2008;218(6):1914-1971reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:09Zpaperaa:paper_00018708_v218_n6_p1914_MartinezInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:10.555Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
A minimum problem with free boundary in Orlicz spaces |
title |
A minimum problem with free boundary in Orlicz spaces |
spellingShingle |
A minimum problem with free boundary in Orlicz spaces Martínez, S. Free boundaries Minimization Orlicz spaces |
title_short |
A minimum problem with free boundary in Orlicz spaces |
title_full |
A minimum problem with free boundary in Orlicz spaces |
title_fullStr |
A minimum problem with free boundary in Orlicz spaces |
title_full_unstemmed |
A minimum problem with free boundary in Orlicz spaces |
title_sort |
A minimum problem with free boundary in Orlicz spaces |
dc.creator.none.fl_str_mv |
Martínez, S. Wolanski, N. |
author |
Martínez, S. |
author_facet |
Martínez, S. Wolanski, N. |
author_role |
author |
author2 |
Wolanski, N. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Free boundaries Minimization Orlicz spaces |
topic |
Free boundaries Minimization Orlicz spaces |
dc.description.none.fl_txt_mv |
We consider the optimization problem of minimizing ∫Ω G (| ∇ u |) + λ χ{u > 0} d x in the class of functions W1, G (Ω) with u - φ0 ∈ W01, G (Ω), for a given φ0 ≥ 0 and bounded. W1, G (Ω) is the class of weakly differentiable functions with ∫Ω G (| ∇ u |) d x < ∞. The conditions on the function G allow for a different behavior at 0 and at ∞. We prove that every solution u is locally Lipschitz continuous, that it is a solution to a free boundary problem and that the free boundary, Ω ∩ ∂ {u > 0}, is a regular surface. Also, we introduce the notion of weak solution to the free boundary problem solved by the minimizers and prove the Lipschitz regularity of the weak solutions and the C1, α regularity of their free boundaries near "flat" free boundary points. © 2008 Elsevier Inc. All rights reserved. Fil:Martínez, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We consider the optimization problem of minimizing ∫Ω G (| ∇ u |) + λ χ{u > 0} d x in the class of functions W1, G (Ω) with u - φ0 ∈ W01, G (Ω), for a given φ0 ≥ 0 and bounded. W1, G (Ω) is the class of weakly differentiable functions with ∫Ω G (| ∇ u |) d x < ∞. The conditions on the function G allow for a different behavior at 0 and at ∞. We prove that every solution u is locally Lipschitz continuous, that it is a solution to a free boundary problem and that the free boundary, Ω ∩ ∂ {u > 0}, is a regular surface. Also, we introduce the notion of weak solution to the free boundary problem solved by the minimizers and prove the Lipschitz regularity of the weak solutions and the C1, α regularity of their free boundaries near "flat" free boundary points. © 2008 Elsevier Inc. All rights reserved. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00018708_v218_n6_p1914_Martinez |
url |
http://hdl.handle.net/20.500.12110/paper_00018708_v218_n6_p1914_Martinez |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Adv. Math. 2008;218(6):1914-1971 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618740342194176 |
score |
12.891075 |