Optimal control strategies to tailor antivirals for acute infectious diseases in the host
- Autores
- Perez, Mara Isabel; Abuin, Pablo; Actis, Marcelo Jesús; Ferramosca, Antonio; Hernandez Vargas, Esteban Abelardo; González, Alejandro Hernán
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Several mathematical models in SARS-CoV-2 have shown how target-cell model can help to understand the spread of the virus in the host and how potential candidates of antiviral treatments can help to control the virus. Concepts as equilibrium and stability show to be crucial to qualitative determine the best alternatives to schedule drugs, according to effectivity in inhibiting the virus infection and replication rates. Important biological events such as rebounds of the infections (when antivirals are incorrectly interrupted) can also be explained by means of a dynamic study of the target-cell model. In this work a full characterization of the dynamical behavior of the target-cell models under control actions is made and, based on this characterization, the optimal fixeddose antiviral schedule that produces the smallest amount of dead cells (without viral load rebounds) is computed. Several simulation results - performed by considering real patient data - show the potential benefits of both, the model characterization and the control strategy.
Fil: Perez, Mara Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Abuin, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Actis, Marcelo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: Ferramosca, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Università Degli Studi Di Bergamo; Italia
Fil: Hernandez Vargas, Esteban Abelardo. Universidad Nacional Autónoma de México; México
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina - Materia
-
IN-HOST ACUTE INFECTION MODEL
EQUILIBRIUM SETS CHARATERIZATION
STABILITY ANALYSIS
MODEL PREDICTIVE CONTROL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/167735
Ver los metadatos del registro completo
id |
CONICETDig_6510b8f660024e4975edcad616b2cf95 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/167735 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimal control strategies to tailor antivirals for acute infectious diseases in the hostPerez, Mara IsabelAbuin, PabloActis, Marcelo JesúsFerramosca, AntonioHernandez Vargas, Esteban AbelardoGonzález, Alejandro HernánIN-HOST ACUTE INFECTION MODELEQUILIBRIUM SETS CHARATERIZATIONSTABILITY ANALYSISMODEL PREDICTIVE CONTROLhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Several mathematical models in SARS-CoV-2 have shown how target-cell model can help to understand the spread of the virus in the host and how potential candidates of antiviral treatments can help to control the virus. Concepts as equilibrium and stability show to be crucial to qualitative determine the best alternatives to schedule drugs, according to effectivity in inhibiting the virus infection and replication rates. Important biological events such as rebounds of the infections (when antivirals are incorrectly interrupted) can also be explained by means of a dynamic study of the target-cell model. In this work a full characterization of the dynamical behavior of the target-cell models under control actions is made and, based on this characterization, the optimal fixeddose antiviral schedule that produces the smallest amount of dead cells (without viral load rebounds) is computed. Several simulation results - performed by considering real patient data - show the potential benefits of both, the model characterization and the control strategy.Fil: Perez, Mara Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Abuin, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Actis, Marcelo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; ArgentinaFil: Ferramosca, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Università Degli Studi Di Bergamo; ItaliaFil: Hernandez Vargas, Esteban Abelardo. Universidad Nacional Autónoma de México; MéxicoFil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaCornell University2021-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/167735Perez, Mara Isabel; Abuin, Pablo; Actis, Marcelo Jesús; Ferramosca, Antonio; Hernandez Vargas, Esteban Abelardo; et al.; Optimal control strategies to tailor antivirals for acute infectious diseases in the host; Cornell University; ArXiv.org; 6-2021; 1-262331-8422CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2106.09528info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2106.09528info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/B9780323901710000111info:eu-repo/semantics/altIdentifier/doi/10.1016/B978-0-32-390171-0.00011-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:22:55Zoai:ri.conicet.gov.ar:11336/167735instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:22:56.069CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimal control strategies to tailor antivirals for acute infectious diseases in the host |
title |
Optimal control strategies to tailor antivirals for acute infectious diseases in the host |
spellingShingle |
Optimal control strategies to tailor antivirals for acute infectious diseases in the host Perez, Mara Isabel IN-HOST ACUTE INFECTION MODEL EQUILIBRIUM SETS CHARATERIZATION STABILITY ANALYSIS MODEL PREDICTIVE CONTROL |
title_short |
Optimal control strategies to tailor antivirals for acute infectious diseases in the host |
title_full |
Optimal control strategies to tailor antivirals for acute infectious diseases in the host |
title_fullStr |
Optimal control strategies to tailor antivirals for acute infectious diseases in the host |
title_full_unstemmed |
Optimal control strategies to tailor antivirals for acute infectious diseases in the host |
title_sort |
Optimal control strategies to tailor antivirals for acute infectious diseases in the host |
dc.creator.none.fl_str_mv |
Perez, Mara Isabel Abuin, Pablo Actis, Marcelo Jesús Ferramosca, Antonio Hernandez Vargas, Esteban Abelardo González, Alejandro Hernán |
author |
Perez, Mara Isabel |
author_facet |
Perez, Mara Isabel Abuin, Pablo Actis, Marcelo Jesús Ferramosca, Antonio Hernandez Vargas, Esteban Abelardo González, Alejandro Hernán |
author_role |
author |
author2 |
Abuin, Pablo Actis, Marcelo Jesús Ferramosca, Antonio Hernandez Vargas, Esteban Abelardo González, Alejandro Hernán |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
IN-HOST ACUTE INFECTION MODEL EQUILIBRIUM SETS CHARATERIZATION STABILITY ANALYSIS MODEL PREDICTIVE CONTROL |
topic |
IN-HOST ACUTE INFECTION MODEL EQUILIBRIUM SETS CHARATERIZATION STABILITY ANALYSIS MODEL PREDICTIVE CONTROL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Several mathematical models in SARS-CoV-2 have shown how target-cell model can help to understand the spread of the virus in the host and how potential candidates of antiviral treatments can help to control the virus. Concepts as equilibrium and stability show to be crucial to qualitative determine the best alternatives to schedule drugs, according to effectivity in inhibiting the virus infection and replication rates. Important biological events such as rebounds of the infections (when antivirals are incorrectly interrupted) can also be explained by means of a dynamic study of the target-cell model. In this work a full characterization of the dynamical behavior of the target-cell models under control actions is made and, based on this characterization, the optimal fixeddose antiviral schedule that produces the smallest amount of dead cells (without viral load rebounds) is computed. Several simulation results - performed by considering real patient data - show the potential benefits of both, the model characterization and the control strategy. Fil: Perez, Mara Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Abuin, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Actis, Marcelo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina Fil: Ferramosca, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Università Degli Studi Di Bergamo; Italia Fil: Hernandez Vargas, Esteban Abelardo. Universidad Nacional Autónoma de México; México Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina |
description |
Several mathematical models in SARS-CoV-2 have shown how target-cell model can help to understand the spread of the virus in the host and how potential candidates of antiviral treatments can help to control the virus. Concepts as equilibrium and stability show to be crucial to qualitative determine the best alternatives to schedule drugs, according to effectivity in inhibiting the virus infection and replication rates. Important biological events such as rebounds of the infections (when antivirals are incorrectly interrupted) can also be explained by means of a dynamic study of the target-cell model. In this work a full characterization of the dynamical behavior of the target-cell models under control actions is made and, based on this characterization, the optimal fixeddose antiviral schedule that produces the smallest amount of dead cells (without viral load rebounds) is computed. Several simulation results - performed by considering real patient data - show the potential benefits of both, the model characterization and the control strategy. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/167735 Perez, Mara Isabel; Abuin, Pablo; Actis, Marcelo Jesús; Ferramosca, Antonio; Hernandez Vargas, Esteban Abelardo; et al.; Optimal control strategies to tailor antivirals for acute infectious diseases in the host; Cornell University; ArXiv.org; 6-2021; 1-26 2331-8422 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/167735 |
identifier_str_mv |
Perez, Mara Isabel; Abuin, Pablo; Actis, Marcelo Jesús; Ferramosca, Antonio; Hernandez Vargas, Esteban Abelardo; et al.; Optimal control strategies to tailor antivirals for acute infectious diseases in the host; Cornell University; ArXiv.org; 6-2021; 1-26 2331-8422 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2106.09528 info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2106.09528 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/B9780323901710000111 info:eu-repo/semantics/altIdentifier/doi/10.1016/B978-0-32-390171-0.00011-1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cornell University |
publisher.none.fl_str_mv |
Cornell University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083376288628736 |
score |
13.22299 |