Recent developments on the Kardar–Parisi–Zhang surface-growth equation
- Autores
- Wio, Horacio Sergio; Escudero, Carlos; Revelli, Jorge Alberto; Deza, Roberto Raul; De La Lama, Marta S.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The stochastic nonlinear partial differential equation known as the Kardar-Parisi-Zhang (KPZ) equation is a highly successful phenomenological mesoscopic model of surface and interface growth processes. Its suitability for analytical work, its explicit symmetries and its prediction of an exact dynamic scaling relation for a one-dimensional substratum led people to adopt it as a 'standard' model in the field during the last quarter of a century. At the same time, several conjectures deserving closer scrutiny were established as dogmas throughout the community. Among these, we find the beliefs that 'genuine' non-equilibrium processes are non-variational in essence, and that the exactness of the dynamic scaling relation owes its existence to a Galilean symmetry. Additionally, the equivalence among planar and radial interface profiles has been generally assumed in the literature throughout the years. Here-among other topics-we introduce a variational formulation of the KPZ equation, remark on the importance of consistency in discretization and challenge the mainstream view on the necessity for scaling of both Galilean symmetry and the one-dimensional fluctuation-dissipation theorem. We also derive the KPZ equation on a growing domain as a first approximation to radial growth, and outline the differences with respect to the classical case that arises in this new situation. This journal is © 2011 The Royal Society.
Fil: Wio, Horacio Sergio. Universidad de Cantabria; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Escudero, Carlos. Universidad Carlos III de Madrid. Instituto de Salud; España
Fil: Revelli, Jorge Alberto. Universidad de Cantabria; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Deza, Roberto Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: De La Lama, Marta S.. Max Planck Institute for Dynamics and Self-Organization; Alemania - Materia
-
DOMAIN GROWTH
GALILEAN INVARIANCE
GROWTH DYNAMICS
VARIATIONAL FORMULATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/190505
Ver los metadatos del registro completo
id |
CONICETDig_6489fb53f6e47c05bfcf498bdb7c64d0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/190505 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Recent developments on the Kardar–Parisi–Zhang surface-growth equationWio, Horacio SergioEscudero, CarlosRevelli, Jorge AlbertoDeza, Roberto RaulDe La Lama, Marta S.DOMAIN GROWTHGALILEAN INVARIANCEGROWTH DYNAMICSVARIATIONAL FORMULATIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The stochastic nonlinear partial differential equation known as the Kardar-Parisi-Zhang (KPZ) equation is a highly successful phenomenological mesoscopic model of surface and interface growth processes. Its suitability for analytical work, its explicit symmetries and its prediction of an exact dynamic scaling relation for a one-dimensional substratum led people to adopt it as a 'standard' model in the field during the last quarter of a century. At the same time, several conjectures deserving closer scrutiny were established as dogmas throughout the community. Among these, we find the beliefs that 'genuine' non-equilibrium processes are non-variational in essence, and that the exactness of the dynamic scaling relation owes its existence to a Galilean symmetry. Additionally, the equivalence among planar and radial interface profiles has been generally assumed in the literature throughout the years. Here-among other topics-we introduce a variational formulation of the KPZ equation, remark on the importance of consistency in discretization and challenge the mainstream view on the necessity for scaling of both Galilean symmetry and the one-dimensional fluctuation-dissipation theorem. We also derive the KPZ equation on a growing domain as a first approximation to radial growth, and outline the differences with respect to the classical case that arises in this new situation. This journal is © 2011 The Royal Society.Fil: Wio, Horacio Sergio. Universidad de Cantabria; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Escudero, Carlos. Universidad Carlos III de Madrid. Instituto de Salud; EspañaFil: Revelli, Jorge Alberto. Universidad de Cantabria; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Deza, Roberto Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: De La Lama, Marta S.. Max Planck Institute for Dynamics and Self-Organization; AlemaniaThe Royal Society2011-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/190505Wio, Horacio Sergio; Escudero, Carlos; Revelli, Jorge Alberto; Deza, Roberto Raul; De La Lama, Marta S.; Recent developments on the Kardar–Parisi–Zhang surface-growth equation; The Royal Society; Philosophical Transactions of the Royal Society A - Mathematical Physical and Engineering Sciences; 369; 1935; 1-2011; 396-4111364-503X1471-2962CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1098/rsta.2010.0259info:eu-repo/semantics/altIdentifier/url/https://royalsocietypublishing.org/doi/10.1098/rsta.2010.0259info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:18Zoai:ri.conicet.gov.ar:11336/190505instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:18.379CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Recent developments on the Kardar–Parisi–Zhang surface-growth equation |
title |
Recent developments on the Kardar–Parisi–Zhang surface-growth equation |
spellingShingle |
Recent developments on the Kardar–Parisi–Zhang surface-growth equation Wio, Horacio Sergio DOMAIN GROWTH GALILEAN INVARIANCE GROWTH DYNAMICS VARIATIONAL FORMULATION |
title_short |
Recent developments on the Kardar–Parisi–Zhang surface-growth equation |
title_full |
Recent developments on the Kardar–Parisi–Zhang surface-growth equation |
title_fullStr |
Recent developments on the Kardar–Parisi–Zhang surface-growth equation |
title_full_unstemmed |
Recent developments on the Kardar–Parisi–Zhang surface-growth equation |
title_sort |
Recent developments on the Kardar–Parisi–Zhang surface-growth equation |
dc.creator.none.fl_str_mv |
Wio, Horacio Sergio Escudero, Carlos Revelli, Jorge Alberto Deza, Roberto Raul De La Lama, Marta S. |
author |
Wio, Horacio Sergio |
author_facet |
Wio, Horacio Sergio Escudero, Carlos Revelli, Jorge Alberto Deza, Roberto Raul De La Lama, Marta S. |
author_role |
author |
author2 |
Escudero, Carlos Revelli, Jorge Alberto Deza, Roberto Raul De La Lama, Marta S. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
DOMAIN GROWTH GALILEAN INVARIANCE GROWTH DYNAMICS VARIATIONAL FORMULATION |
topic |
DOMAIN GROWTH GALILEAN INVARIANCE GROWTH DYNAMICS VARIATIONAL FORMULATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The stochastic nonlinear partial differential equation known as the Kardar-Parisi-Zhang (KPZ) equation is a highly successful phenomenological mesoscopic model of surface and interface growth processes. Its suitability for analytical work, its explicit symmetries and its prediction of an exact dynamic scaling relation for a one-dimensional substratum led people to adopt it as a 'standard' model in the field during the last quarter of a century. At the same time, several conjectures deserving closer scrutiny were established as dogmas throughout the community. Among these, we find the beliefs that 'genuine' non-equilibrium processes are non-variational in essence, and that the exactness of the dynamic scaling relation owes its existence to a Galilean symmetry. Additionally, the equivalence among planar and radial interface profiles has been generally assumed in the literature throughout the years. Here-among other topics-we introduce a variational formulation of the KPZ equation, remark on the importance of consistency in discretization and challenge the mainstream view on the necessity for scaling of both Galilean symmetry and the one-dimensional fluctuation-dissipation theorem. We also derive the KPZ equation on a growing domain as a first approximation to radial growth, and outline the differences with respect to the classical case that arises in this new situation. This journal is © 2011 The Royal Society. Fil: Wio, Horacio Sergio. Universidad de Cantabria; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Escudero, Carlos. Universidad Carlos III de Madrid. Instituto de Salud; España Fil: Revelli, Jorge Alberto. Universidad de Cantabria; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina Fil: Deza, Roberto Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina Fil: De La Lama, Marta S.. Max Planck Institute for Dynamics and Self-Organization; Alemania |
description |
The stochastic nonlinear partial differential equation known as the Kardar-Parisi-Zhang (KPZ) equation is a highly successful phenomenological mesoscopic model of surface and interface growth processes. Its suitability for analytical work, its explicit symmetries and its prediction of an exact dynamic scaling relation for a one-dimensional substratum led people to adopt it as a 'standard' model in the field during the last quarter of a century. At the same time, several conjectures deserving closer scrutiny were established as dogmas throughout the community. Among these, we find the beliefs that 'genuine' non-equilibrium processes are non-variational in essence, and that the exactness of the dynamic scaling relation owes its existence to a Galilean symmetry. Additionally, the equivalence among planar and radial interface profiles has been generally assumed in the literature throughout the years. Here-among other topics-we introduce a variational formulation of the KPZ equation, remark on the importance of consistency in discretization and challenge the mainstream view on the necessity for scaling of both Galilean symmetry and the one-dimensional fluctuation-dissipation theorem. We also derive the KPZ equation on a growing domain as a first approximation to radial growth, and outline the differences with respect to the classical case that arises in this new situation. This journal is © 2011 The Royal Society. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/190505 Wio, Horacio Sergio; Escudero, Carlos; Revelli, Jorge Alberto; Deza, Roberto Raul; De La Lama, Marta S.; Recent developments on the Kardar–Parisi–Zhang surface-growth equation; The Royal Society; Philosophical Transactions of the Royal Society A - Mathematical Physical and Engineering Sciences; 369; 1935; 1-2011; 396-411 1364-503X 1471-2962 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/190505 |
identifier_str_mv |
Wio, Horacio Sergio; Escudero, Carlos; Revelli, Jorge Alberto; Deza, Roberto Raul; De La Lama, Marta S.; Recent developments on the Kardar–Parisi–Zhang surface-growth equation; The Royal Society; Philosophical Transactions of the Royal Society A - Mathematical Physical and Engineering Sciences; 369; 1935; 1-2011; 396-411 1364-503X 1471-2962 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1098/rsta.2010.0259 info:eu-repo/semantics/altIdentifier/url/https://royalsocietypublishing.org/doi/10.1098/rsta.2010.0259 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
The Royal Society |
publisher.none.fl_str_mv |
The Royal Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613760172425216 |
score |
13.070432 |