Recent developments on the Kardar–Parisi–Zhang surface-growth equation

Autores
Wio, Horacio Sergio; Escudero, Carlos; Revelli, Jorge Alberto; Deza, Roberto Raul; De La Lama, Marta S.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The stochastic nonlinear partial differential equation known as the Kardar-Parisi-Zhang (KPZ) equation is a highly successful phenomenological mesoscopic model of surface and interface growth processes. Its suitability for analytical work, its explicit symmetries and its prediction of an exact dynamic scaling relation for a one-dimensional substratum led people to adopt it as a 'standard' model in the field during the last quarter of a century. At the same time, several conjectures deserving closer scrutiny were established as dogmas throughout the community. Among these, we find the beliefs that 'genuine' non-equilibrium processes are non-variational in essence, and that the exactness of the dynamic scaling relation owes its existence to a Galilean symmetry. Additionally, the equivalence among planar and radial interface profiles has been generally assumed in the literature throughout the years. Here-among other topics-we introduce a variational formulation of the KPZ equation, remark on the importance of consistency in discretization and challenge the mainstream view on the necessity for scaling of both Galilean symmetry and the one-dimensional fluctuation-dissipation theorem. We also derive the KPZ equation on a growing domain as a first approximation to radial growth, and outline the differences with respect to the classical case that arises in this new situation. This journal is © 2011 The Royal Society.
Fil: Wio, Horacio Sergio. Universidad de Cantabria; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Escudero, Carlos. Universidad Carlos III de Madrid. Instituto de Salud; España
Fil: Revelli, Jorge Alberto. Universidad de Cantabria; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Deza, Roberto Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: De La Lama, Marta S.. Max Planck Institute for Dynamics and Self-Organization; Alemania
Materia
DOMAIN GROWTH
GALILEAN INVARIANCE
GROWTH DYNAMICS
VARIATIONAL FORMULATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/190505

id CONICETDig_6489fb53f6e47c05bfcf498bdb7c64d0
oai_identifier_str oai:ri.conicet.gov.ar:11336/190505
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Recent developments on the Kardar–Parisi–Zhang surface-growth equationWio, Horacio SergioEscudero, CarlosRevelli, Jorge AlbertoDeza, Roberto RaulDe La Lama, Marta S.DOMAIN GROWTHGALILEAN INVARIANCEGROWTH DYNAMICSVARIATIONAL FORMULATIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The stochastic nonlinear partial differential equation known as the Kardar-Parisi-Zhang (KPZ) equation is a highly successful phenomenological mesoscopic model of surface and interface growth processes. Its suitability for analytical work, its explicit symmetries and its prediction of an exact dynamic scaling relation for a one-dimensional substratum led people to adopt it as a 'standard' model in the field during the last quarter of a century. At the same time, several conjectures deserving closer scrutiny were established as dogmas throughout the community. Among these, we find the beliefs that 'genuine' non-equilibrium processes are non-variational in essence, and that the exactness of the dynamic scaling relation owes its existence to a Galilean symmetry. Additionally, the equivalence among planar and radial interface profiles has been generally assumed in the literature throughout the years. Here-among other topics-we introduce a variational formulation of the KPZ equation, remark on the importance of consistency in discretization and challenge the mainstream view on the necessity for scaling of both Galilean symmetry and the one-dimensional fluctuation-dissipation theorem. We also derive the KPZ equation on a growing domain as a first approximation to radial growth, and outline the differences with respect to the classical case that arises in this new situation. This journal is © 2011 The Royal Society.Fil: Wio, Horacio Sergio. Universidad de Cantabria; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Escudero, Carlos. Universidad Carlos III de Madrid. Instituto de Salud; EspañaFil: Revelli, Jorge Alberto. Universidad de Cantabria; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Deza, Roberto Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: De La Lama, Marta S.. Max Planck Institute for Dynamics and Self-Organization; AlemaniaThe Royal Society2011-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/190505Wio, Horacio Sergio; Escudero, Carlos; Revelli, Jorge Alberto; Deza, Roberto Raul; De La Lama, Marta S.; Recent developments on the Kardar–Parisi–Zhang surface-growth equation; The Royal Society; Philosophical Transactions of the Royal Society A - Mathematical Physical and Engineering Sciences; 369; 1935; 1-2011; 396-4111364-503X1471-2962CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1098/rsta.2010.0259info:eu-repo/semantics/altIdentifier/url/https://royalsocietypublishing.org/doi/10.1098/rsta.2010.0259info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:18Zoai:ri.conicet.gov.ar:11336/190505instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:18.379CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Recent developments on the Kardar–Parisi–Zhang surface-growth equation
title Recent developments on the Kardar–Parisi–Zhang surface-growth equation
spellingShingle Recent developments on the Kardar–Parisi–Zhang surface-growth equation
Wio, Horacio Sergio
DOMAIN GROWTH
GALILEAN INVARIANCE
GROWTH DYNAMICS
VARIATIONAL FORMULATION
title_short Recent developments on the Kardar–Parisi–Zhang surface-growth equation
title_full Recent developments on the Kardar–Parisi–Zhang surface-growth equation
title_fullStr Recent developments on the Kardar–Parisi–Zhang surface-growth equation
title_full_unstemmed Recent developments on the Kardar–Parisi–Zhang surface-growth equation
title_sort Recent developments on the Kardar–Parisi–Zhang surface-growth equation
dc.creator.none.fl_str_mv Wio, Horacio Sergio
Escudero, Carlos
Revelli, Jorge Alberto
Deza, Roberto Raul
De La Lama, Marta S.
author Wio, Horacio Sergio
author_facet Wio, Horacio Sergio
Escudero, Carlos
Revelli, Jorge Alberto
Deza, Roberto Raul
De La Lama, Marta S.
author_role author
author2 Escudero, Carlos
Revelli, Jorge Alberto
Deza, Roberto Raul
De La Lama, Marta S.
author2_role author
author
author
author
dc.subject.none.fl_str_mv DOMAIN GROWTH
GALILEAN INVARIANCE
GROWTH DYNAMICS
VARIATIONAL FORMULATION
topic DOMAIN GROWTH
GALILEAN INVARIANCE
GROWTH DYNAMICS
VARIATIONAL FORMULATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The stochastic nonlinear partial differential equation known as the Kardar-Parisi-Zhang (KPZ) equation is a highly successful phenomenological mesoscopic model of surface and interface growth processes. Its suitability for analytical work, its explicit symmetries and its prediction of an exact dynamic scaling relation for a one-dimensional substratum led people to adopt it as a 'standard' model in the field during the last quarter of a century. At the same time, several conjectures deserving closer scrutiny were established as dogmas throughout the community. Among these, we find the beliefs that 'genuine' non-equilibrium processes are non-variational in essence, and that the exactness of the dynamic scaling relation owes its existence to a Galilean symmetry. Additionally, the equivalence among planar and radial interface profiles has been generally assumed in the literature throughout the years. Here-among other topics-we introduce a variational formulation of the KPZ equation, remark on the importance of consistency in discretization and challenge the mainstream view on the necessity for scaling of both Galilean symmetry and the one-dimensional fluctuation-dissipation theorem. We also derive the KPZ equation on a growing domain as a first approximation to radial growth, and outline the differences with respect to the classical case that arises in this new situation. This journal is © 2011 The Royal Society.
Fil: Wio, Horacio Sergio. Universidad de Cantabria; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Escudero, Carlos. Universidad Carlos III de Madrid. Instituto de Salud; España
Fil: Revelli, Jorge Alberto. Universidad de Cantabria; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Deza, Roberto Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: De La Lama, Marta S.. Max Planck Institute for Dynamics and Self-Organization; Alemania
description The stochastic nonlinear partial differential equation known as the Kardar-Parisi-Zhang (KPZ) equation is a highly successful phenomenological mesoscopic model of surface and interface growth processes. Its suitability for analytical work, its explicit symmetries and its prediction of an exact dynamic scaling relation for a one-dimensional substratum led people to adopt it as a 'standard' model in the field during the last quarter of a century. At the same time, several conjectures deserving closer scrutiny were established as dogmas throughout the community. Among these, we find the beliefs that 'genuine' non-equilibrium processes are non-variational in essence, and that the exactness of the dynamic scaling relation owes its existence to a Galilean symmetry. Additionally, the equivalence among planar and radial interface profiles has been generally assumed in the literature throughout the years. Here-among other topics-we introduce a variational formulation of the KPZ equation, remark on the importance of consistency in discretization and challenge the mainstream view on the necessity for scaling of both Galilean symmetry and the one-dimensional fluctuation-dissipation theorem. We also derive the KPZ equation on a growing domain as a first approximation to radial growth, and outline the differences with respect to the classical case that arises in this new situation. This journal is © 2011 The Royal Society.
publishDate 2011
dc.date.none.fl_str_mv 2011-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/190505
Wio, Horacio Sergio; Escudero, Carlos; Revelli, Jorge Alberto; Deza, Roberto Raul; De La Lama, Marta S.; Recent developments on the Kardar–Parisi–Zhang surface-growth equation; The Royal Society; Philosophical Transactions of the Royal Society A - Mathematical Physical and Engineering Sciences; 369; 1935; 1-2011; 396-411
1364-503X
1471-2962
CONICET Digital
CONICET
url http://hdl.handle.net/11336/190505
identifier_str_mv Wio, Horacio Sergio; Escudero, Carlos; Revelli, Jorge Alberto; Deza, Roberto Raul; De La Lama, Marta S.; Recent developments on the Kardar–Parisi–Zhang surface-growth equation; The Royal Society; Philosophical Transactions of the Royal Society A - Mathematical Physical and Engineering Sciences; 369; 1935; 1-2011; 396-411
1364-503X
1471-2962
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1098/rsta.2010.0259
info:eu-repo/semantics/altIdentifier/url/https://royalsocietypublishing.org/doi/10.1098/rsta.2010.0259
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv The Royal Society
publisher.none.fl_str_mv The Royal Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613760172425216
score 13.070432