KPZ. Recent developments via a variational formulation
- Autores
- Wio, Horacio Sergio; Deza, Roberto Raul; Escudero, Carlos Gabriel; Revelli, Jorge Alberto
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Recently, a variational approach has been introduced for the paradigmatic Kardar–Parisi– Zhang (KPZ) equation. Here we review that approach, together with the functional Taylor expansion that the KPZ nonequilibrium potential (NEP) admits. Such expansion becomes naturally truncated at third order, giving rise to a nonlinear stochastic partial differential equation to be regarded as a gradient-flow counterpart to the KPZ equation. A dynamic renormalization group analysis at one-loop order of this new mesoscopic model yields the KPZ scaling relation α + z = 2, as a consequence of the exact cancelation of the different contributions to vertex renormalization. This result is quite remarkable, considering the lower degree of symmetry of this equation, which is in particular not Galilean invariant. In addition, this scheme is exploited to inquire about the dynamical behavior of the KPZ equation through a path-integral approach. Each of these aspects offers novel points of view and sheds light on particular aspects of the dynamics of the KPZ equation.
Fil: Wio, Horacio Sergio. Universidad de Cantabria; España. Consejo Superior de Investigaciones Científicas; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Deza, Roberto Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Escudero, Carlos Gabriel. Instituto de Ciencias Matemáticas; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Revelli, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina - Materia
-
KPZ
EQUATION
VARIATIONAL
FORMULATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/25792
Ver los metadatos del registro completo
id |
CONICETDig_ad27300e50841d0263ec58001f2ebf46 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/25792 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
KPZ. Recent developments via a variational formulationWio, Horacio SergioDeza, Roberto RaulEscudero, Carlos GabrielRevelli, Jorge AlbertoKPZEQUATIONVARIATIONALFORMULATIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Recently, a variational approach has been introduced for the paradigmatic Kardar–Parisi– Zhang (KPZ) equation. Here we review that approach, together with the functional Taylor expansion that the KPZ nonequilibrium potential (NEP) admits. Such expansion becomes naturally truncated at third order, giving rise to a nonlinear stochastic partial differential equation to be regarded as a gradient-flow counterpart to the KPZ equation. A dynamic renormalization group analysis at one-loop order of this new mesoscopic model yields the KPZ scaling relation α + z = 2, as a consequence of the exact cancelation of the different contributions to vertex renormalization. This result is quite remarkable, considering the lower degree of symmetry of this equation, which is in particular not Galilean invariant. In addition, this scheme is exploited to inquire about the dynamical behavior of the KPZ equation through a path-integral approach. Each of these aspects offers novel points of view and sheds light on particular aspects of the dynamics of the KPZ equation.Fil: Wio, Horacio Sergio. Universidad de Cantabria; España. Consejo Superior de Investigaciones Científicas; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Deza, Roberto Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Escudero, Carlos Gabriel. Instituto de Ciencias Matemáticas; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Revelli, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaPapers in Physics2013-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/25792Wio, Horacio Sergio; Deza, Roberto Raul; Escudero, Carlos Gabriel; Revelli, Jorge Alberto; KPZ. Recent developments via a variational formulation; Papers in Physics; Papers in Physics; 5; 2; 12-2013; 1-16; 0500101852-4249CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4279/PIP.050010info:eu-repo/semantics/altIdentifier/url/http://www.papersinphysics.org/index.php/papersinphysics/article/view/148info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1401.6425info:eu-repo/semantics/altIdentifier/url/http://ref.scielo.org/f6nghrinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:29:46Zoai:ri.conicet.gov.ar:11336/25792instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:29:47.08CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
KPZ. Recent developments via a variational formulation |
title |
KPZ. Recent developments via a variational formulation |
spellingShingle |
KPZ. Recent developments via a variational formulation Wio, Horacio Sergio KPZ EQUATION VARIATIONAL FORMULATION |
title_short |
KPZ. Recent developments via a variational formulation |
title_full |
KPZ. Recent developments via a variational formulation |
title_fullStr |
KPZ. Recent developments via a variational formulation |
title_full_unstemmed |
KPZ. Recent developments via a variational formulation |
title_sort |
KPZ. Recent developments via a variational formulation |
dc.creator.none.fl_str_mv |
Wio, Horacio Sergio Deza, Roberto Raul Escudero, Carlos Gabriel Revelli, Jorge Alberto |
author |
Wio, Horacio Sergio |
author_facet |
Wio, Horacio Sergio Deza, Roberto Raul Escudero, Carlos Gabriel Revelli, Jorge Alberto |
author_role |
author |
author2 |
Deza, Roberto Raul Escudero, Carlos Gabriel Revelli, Jorge Alberto |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
KPZ EQUATION VARIATIONAL FORMULATION |
topic |
KPZ EQUATION VARIATIONAL FORMULATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Recently, a variational approach has been introduced for the paradigmatic Kardar–Parisi– Zhang (KPZ) equation. Here we review that approach, together with the functional Taylor expansion that the KPZ nonequilibrium potential (NEP) admits. Such expansion becomes naturally truncated at third order, giving rise to a nonlinear stochastic partial differential equation to be regarded as a gradient-flow counterpart to the KPZ equation. A dynamic renormalization group analysis at one-loop order of this new mesoscopic model yields the KPZ scaling relation α + z = 2, as a consequence of the exact cancelation of the different contributions to vertex renormalization. This result is quite remarkable, considering the lower degree of symmetry of this equation, which is in particular not Galilean invariant. In addition, this scheme is exploited to inquire about the dynamical behavior of the KPZ equation through a path-integral approach. Each of these aspects offers novel points of view and sheds light on particular aspects of the dynamics of the KPZ equation. Fil: Wio, Horacio Sergio. Universidad de Cantabria; España. Consejo Superior de Investigaciones Científicas; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Deza, Roberto Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina Fil: Escudero, Carlos Gabriel. Instituto de Ciencias Matemáticas; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Revelli, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina |
description |
Recently, a variational approach has been introduced for the paradigmatic Kardar–Parisi– Zhang (KPZ) equation. Here we review that approach, together with the functional Taylor expansion that the KPZ nonequilibrium potential (NEP) admits. Such expansion becomes naturally truncated at third order, giving rise to a nonlinear stochastic partial differential equation to be regarded as a gradient-flow counterpart to the KPZ equation. A dynamic renormalization group analysis at one-loop order of this new mesoscopic model yields the KPZ scaling relation α + z = 2, as a consequence of the exact cancelation of the different contributions to vertex renormalization. This result is quite remarkable, considering the lower degree of symmetry of this equation, which is in particular not Galilean invariant. In addition, this scheme is exploited to inquire about the dynamical behavior of the KPZ equation through a path-integral approach. Each of these aspects offers novel points of view and sheds light on particular aspects of the dynamics of the KPZ equation. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/25792 Wio, Horacio Sergio; Deza, Roberto Raul; Escudero, Carlos Gabriel; Revelli, Jorge Alberto; KPZ. Recent developments via a variational formulation; Papers in Physics; Papers in Physics; 5; 2; 12-2013; 1-16; 050010 1852-4249 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/25792 |
identifier_str_mv |
Wio, Horacio Sergio; Deza, Roberto Raul; Escudero, Carlos Gabriel; Revelli, Jorge Alberto; KPZ. Recent developments via a variational formulation; Papers in Physics; Papers in Physics; 5; 2; 12-2013; 1-16; 050010 1852-4249 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.4279/PIP.050010 info:eu-repo/semantics/altIdentifier/url/http://www.papersinphysics.org/index.php/papersinphysics/article/view/148 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1401.6425 info:eu-repo/semantics/altIdentifier/url/http://ref.scielo.org/f6nghr |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Papers in Physics |
publisher.none.fl_str_mv |
Papers in Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614305128906752 |
score |
13.070432 |