KPZ. Recent developments via a variational formulation

Autores
Wio, Horacio Sergio; Deza, Roberto Raul; Escudero, Carlos Gabriel; Revelli, Jorge Alberto
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Recently, a variational approach has been introduced for the paradigmatic Kardar–Parisi– Zhang (KPZ) equation. Here we review that approach, together with the functional Taylor expansion that the KPZ nonequilibrium potential (NEP) admits. Such expansion becomes naturally truncated at third order, giving rise to a nonlinear stochastic partial differential equation to be regarded as a gradient-flow counterpart to the KPZ equation. A dynamic renormalization group analysis at one-loop order of this new mesoscopic model yields the KPZ scaling relation α + z = 2, as a consequence of the exact cancelation of the different contributions to vertex renormalization. This result is quite remarkable, considering the lower degree of symmetry of this equation, which is in particular not Galilean invariant. In addition, this scheme is exploited to inquire about the dynamical behavior of the KPZ equation through a path-integral approach. Each of these aspects offers novel points of view and sheds light on particular aspects of the dynamics of the KPZ equation.
Fil: Wio, Horacio Sergio. Universidad de Cantabria; España. Consejo Superior de Investigaciones Científicas; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Deza, Roberto Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Escudero, Carlos Gabriel. Instituto de Ciencias Matemáticas; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Revelli, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Materia
KPZ
EQUATION
VARIATIONAL
FORMULATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/25792

id CONICETDig_ad27300e50841d0263ec58001f2ebf46
oai_identifier_str oai:ri.conicet.gov.ar:11336/25792
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling KPZ. Recent developments via a variational formulationWio, Horacio SergioDeza, Roberto RaulEscudero, Carlos GabrielRevelli, Jorge AlbertoKPZEQUATIONVARIATIONALFORMULATIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Recently, a variational approach has been introduced for the paradigmatic Kardar–Parisi– Zhang (KPZ) equation. Here we review that approach, together with the functional Taylor expansion that the KPZ nonequilibrium potential (NEP) admits. Such expansion becomes naturally truncated at third order, giving rise to a nonlinear stochastic partial differential equation to be regarded as a gradient-flow counterpart to the KPZ equation. A dynamic renormalization group analysis at one-loop order of this new mesoscopic model yields the KPZ scaling relation α + z = 2, as a consequence of the exact cancelation of the different contributions to vertex renormalization. This result is quite remarkable, considering the lower degree of symmetry of this equation, which is in particular not Galilean invariant. In addition, this scheme is exploited to inquire about the dynamical behavior of the KPZ equation through a path-integral approach. Each of these aspects offers novel points of view and sheds light on particular aspects of the dynamics of the KPZ equation.Fil: Wio, Horacio Sergio. Universidad de Cantabria; España. Consejo Superior de Investigaciones Científicas; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Deza, Roberto Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Escudero, Carlos Gabriel. Instituto de Ciencias Matemáticas; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Revelli, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaPapers in Physics2013-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/25792Wio, Horacio Sergio; Deza, Roberto Raul; Escudero, Carlos Gabriel; Revelli, Jorge Alberto; KPZ. Recent developments via a variational formulation; Papers in Physics; Papers in Physics; 5; 2; 12-2013; 1-16; 0500101852-4249CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4279/PIP.050010info:eu-repo/semantics/altIdentifier/url/http://www.papersinphysics.org/index.php/papersinphysics/article/view/148info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1401.6425info:eu-repo/semantics/altIdentifier/url/http://ref.scielo.org/f6nghrinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:29:46Zoai:ri.conicet.gov.ar:11336/25792instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:29:47.08CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv KPZ. Recent developments via a variational formulation
title KPZ. Recent developments via a variational formulation
spellingShingle KPZ. Recent developments via a variational formulation
Wio, Horacio Sergio
KPZ
EQUATION
VARIATIONAL
FORMULATION
title_short KPZ. Recent developments via a variational formulation
title_full KPZ. Recent developments via a variational formulation
title_fullStr KPZ. Recent developments via a variational formulation
title_full_unstemmed KPZ. Recent developments via a variational formulation
title_sort KPZ. Recent developments via a variational formulation
dc.creator.none.fl_str_mv Wio, Horacio Sergio
Deza, Roberto Raul
Escudero, Carlos Gabriel
Revelli, Jorge Alberto
author Wio, Horacio Sergio
author_facet Wio, Horacio Sergio
Deza, Roberto Raul
Escudero, Carlos Gabriel
Revelli, Jorge Alberto
author_role author
author2 Deza, Roberto Raul
Escudero, Carlos Gabriel
Revelli, Jorge Alberto
author2_role author
author
author
dc.subject.none.fl_str_mv KPZ
EQUATION
VARIATIONAL
FORMULATION
topic KPZ
EQUATION
VARIATIONAL
FORMULATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Recently, a variational approach has been introduced for the paradigmatic Kardar–Parisi– Zhang (KPZ) equation. Here we review that approach, together with the functional Taylor expansion that the KPZ nonequilibrium potential (NEP) admits. Such expansion becomes naturally truncated at third order, giving rise to a nonlinear stochastic partial differential equation to be regarded as a gradient-flow counterpart to the KPZ equation. A dynamic renormalization group analysis at one-loop order of this new mesoscopic model yields the KPZ scaling relation α + z = 2, as a consequence of the exact cancelation of the different contributions to vertex renormalization. This result is quite remarkable, considering the lower degree of symmetry of this equation, which is in particular not Galilean invariant. In addition, this scheme is exploited to inquire about the dynamical behavior of the KPZ equation through a path-integral approach. Each of these aspects offers novel points of view and sheds light on particular aspects of the dynamics of the KPZ equation.
Fil: Wio, Horacio Sergio. Universidad de Cantabria; España. Consejo Superior de Investigaciones Científicas; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Deza, Roberto Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Escudero, Carlos Gabriel. Instituto de Ciencias Matemáticas; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Revelli, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
description Recently, a variational approach has been introduced for the paradigmatic Kardar–Parisi– Zhang (KPZ) equation. Here we review that approach, together with the functional Taylor expansion that the KPZ nonequilibrium potential (NEP) admits. Such expansion becomes naturally truncated at third order, giving rise to a nonlinear stochastic partial differential equation to be regarded as a gradient-flow counterpart to the KPZ equation. A dynamic renormalization group analysis at one-loop order of this new mesoscopic model yields the KPZ scaling relation α + z = 2, as a consequence of the exact cancelation of the different contributions to vertex renormalization. This result is quite remarkable, considering the lower degree of symmetry of this equation, which is in particular not Galilean invariant. In addition, this scheme is exploited to inquire about the dynamical behavior of the KPZ equation through a path-integral approach. Each of these aspects offers novel points of view and sheds light on particular aspects of the dynamics of the KPZ equation.
publishDate 2013
dc.date.none.fl_str_mv 2013-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/25792
Wio, Horacio Sergio; Deza, Roberto Raul; Escudero, Carlos Gabriel; Revelli, Jorge Alberto; KPZ. Recent developments via a variational formulation; Papers in Physics; Papers in Physics; 5; 2; 12-2013; 1-16; 050010
1852-4249
CONICET Digital
CONICET
url http://hdl.handle.net/11336/25792
identifier_str_mv Wio, Horacio Sergio; Deza, Roberto Raul; Escudero, Carlos Gabriel; Revelli, Jorge Alberto; KPZ. Recent developments via a variational formulation; Papers in Physics; Papers in Physics; 5; 2; 12-2013; 1-16; 050010
1852-4249
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.4279/PIP.050010
info:eu-repo/semantics/altIdentifier/url/http://www.papersinphysics.org/index.php/papersinphysics/article/view/148
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1401.6425
info:eu-repo/semantics/altIdentifier/url/http://ref.scielo.org/f6nghr
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Papers in Physics
publisher.none.fl_str_mv Papers in Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614305128906752
score 13.070432