d-Dimensional KPZ equation as a stochastic gradient flow in an evolving landscape: Interpretation and time evolution of its generating functional

Autores
Wio, Horacio Sergio; Rodríguez, Miguel A.; Gallego, Rafael; Revelli, Jorge Alberto; Alés, Alejandro; Deza, Roberto Raul
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The deterministic KPZ equation has been recently formulated as a gradient flow. Its non-equilibrium analog of a free energy-the "non-equilibrium potential" F[h], providing at each time the landscape where the stochastic dynamics of h(x,t) takes place-is however unbounded, and its exact evaluation involves all the detailed histories leading to h(x,t) from some initial configuration h0(x,0). After pinpointing some implications of these facts, we study the time behavior of t (the average of Φ[h] over noise realizations at time t) and show the interesting consequences of its structure when an external driving force F is included. The asymptotic form of the time derivative Φ[h] is shown to be valid for any substrate dimensionality d, thus providing a valuable tool for studies in d > 1.
Fil: Wio, Horacio Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Cantabria; España. Consejo Superior de Investigaciones Científicas; España
Fil: Rodríguez, Miguel A.. Universidad de Cantabria; España. Consejo Superior de Investigaciones Científicas; España
Fil: Gallego, Rafael. Universidad de Oviedo; España
Fil: Revelli, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Alés, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Deza, Roberto Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; Argentina
Materia
NON-EQUILIBRIUM GROWTH
SCALING LAWS
STOCHASTIC METHODS
VARIATIONAL PRINCIPLES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/63944

id CONICETDig_8800592f9e5887b47068160163f25867
oai_identifier_str oai:ri.conicet.gov.ar:11336/63944
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling d-Dimensional KPZ equation as a stochastic gradient flow in an evolving landscape: Interpretation and time evolution of its generating functionalWio, Horacio SergioRodríguez, Miguel A.Gallego, RafaelRevelli, Jorge AlbertoAlés, AlejandroDeza, Roberto RaulNON-EQUILIBRIUM GROWTHSCALING LAWSSTOCHASTIC METHODSVARIATIONAL PRINCIPLEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The deterministic KPZ equation has been recently formulated as a gradient flow. Its non-equilibrium analog of a free energy-the "non-equilibrium potential" F[h], providing at each time the landscape where the stochastic dynamics of h(x,t) takes place-is however unbounded, and its exact evaluation involves all the detailed histories leading to h(x,t) from some initial configuration h0(x,0). After pinpointing some implications of these facts, we study the time behavior of t (the average of Φ[h] over noise realizations at time t) and show the interesting consequences of its structure when an external driving force F is included. The asymptotic form of the time derivative Φ[h] is shown to be valid for any substrate dimensionality d, thus providing a valuable tool for studies in d > 1.Fil: Wio, Horacio Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Cantabria; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Rodríguez, Miguel A.. Universidad de Cantabria; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Gallego, Rafael. Universidad de Oviedo; EspañaFil: Revelli, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Alés, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Deza, Roberto Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; ArgentinaFrontiers Media S.A.2017-01-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/63944Wio, Horacio Sergio; Rodríguez, Miguel A.; Gallego, Rafael; Revelli, Jorge Alberto; Alés, Alejandro; et al.; d-Dimensional KPZ equation as a stochastic gradient flow in an evolving landscape: Interpretation and time evolution of its generating functional; Frontiers Media S.A.; Frontiers in Physics; 4; 52; 18-1-2017; 1-101387-33261572-9419CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3389/fphy.2016.00052info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fphy.2016.00052info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:50Zoai:ri.conicet.gov.ar:11336/63944instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:50.589CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv d-Dimensional KPZ equation as a stochastic gradient flow in an evolving landscape: Interpretation and time evolution of its generating functional
title d-Dimensional KPZ equation as a stochastic gradient flow in an evolving landscape: Interpretation and time evolution of its generating functional
spellingShingle d-Dimensional KPZ equation as a stochastic gradient flow in an evolving landscape: Interpretation and time evolution of its generating functional
Wio, Horacio Sergio
NON-EQUILIBRIUM GROWTH
SCALING LAWS
STOCHASTIC METHODS
VARIATIONAL PRINCIPLES
title_short d-Dimensional KPZ equation as a stochastic gradient flow in an evolving landscape: Interpretation and time evolution of its generating functional
title_full d-Dimensional KPZ equation as a stochastic gradient flow in an evolving landscape: Interpretation and time evolution of its generating functional
title_fullStr d-Dimensional KPZ equation as a stochastic gradient flow in an evolving landscape: Interpretation and time evolution of its generating functional
title_full_unstemmed d-Dimensional KPZ equation as a stochastic gradient flow in an evolving landscape: Interpretation and time evolution of its generating functional
title_sort d-Dimensional KPZ equation as a stochastic gradient flow in an evolving landscape: Interpretation and time evolution of its generating functional
dc.creator.none.fl_str_mv Wio, Horacio Sergio
Rodríguez, Miguel A.
Gallego, Rafael
Revelli, Jorge Alberto
Alés, Alejandro
Deza, Roberto Raul
author Wio, Horacio Sergio
author_facet Wio, Horacio Sergio
Rodríguez, Miguel A.
Gallego, Rafael
Revelli, Jorge Alberto
Alés, Alejandro
Deza, Roberto Raul
author_role author
author2 Rodríguez, Miguel A.
Gallego, Rafael
Revelli, Jorge Alberto
Alés, Alejandro
Deza, Roberto Raul
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv NON-EQUILIBRIUM GROWTH
SCALING LAWS
STOCHASTIC METHODS
VARIATIONAL PRINCIPLES
topic NON-EQUILIBRIUM GROWTH
SCALING LAWS
STOCHASTIC METHODS
VARIATIONAL PRINCIPLES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The deterministic KPZ equation has been recently formulated as a gradient flow. Its non-equilibrium analog of a free energy-the "non-equilibrium potential" F[h], providing at each time the landscape where the stochastic dynamics of h(x,t) takes place-is however unbounded, and its exact evaluation involves all the detailed histories leading to h(x,t) from some initial configuration h0(x,0). After pinpointing some implications of these facts, we study the time behavior of t (the average of Φ[h] over noise realizations at time t) and show the interesting consequences of its structure when an external driving force F is included. The asymptotic form of the time derivative Φ[h] is shown to be valid for any substrate dimensionality d, thus providing a valuable tool for studies in d > 1.
Fil: Wio, Horacio Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Cantabria; España. Consejo Superior de Investigaciones Científicas; España
Fil: Rodríguez, Miguel A.. Universidad de Cantabria; España. Consejo Superior de Investigaciones Científicas; España
Fil: Gallego, Rafael. Universidad de Oviedo; España
Fil: Revelli, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Alés, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Deza, Roberto Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; Argentina
description The deterministic KPZ equation has been recently formulated as a gradient flow. Its non-equilibrium analog of a free energy-the "non-equilibrium potential" F[h], providing at each time the landscape where the stochastic dynamics of h(x,t) takes place-is however unbounded, and its exact evaluation involves all the detailed histories leading to h(x,t) from some initial configuration h0(x,0). After pinpointing some implications of these facts, we study the time behavior of t (the average of Φ[h] over noise realizations at time t) and show the interesting consequences of its structure when an external driving force F is included. The asymptotic form of the time derivative Φ[h] is shown to be valid for any substrate dimensionality d, thus providing a valuable tool for studies in d > 1.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-18
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/63944
Wio, Horacio Sergio; Rodríguez, Miguel A.; Gallego, Rafael; Revelli, Jorge Alberto; Alés, Alejandro; et al.; d-Dimensional KPZ equation as a stochastic gradient flow in an evolving landscape: Interpretation and time evolution of its generating functional; Frontiers Media S.A.; Frontiers in Physics; 4; 52; 18-1-2017; 1-10
1387-3326
1572-9419
CONICET Digital
CONICET
url http://hdl.handle.net/11336/63944
identifier_str_mv Wio, Horacio Sergio; Rodríguez, Miguel A.; Gallego, Rafael; Revelli, Jorge Alberto; Alés, Alejandro; et al.; d-Dimensional KPZ equation as a stochastic gradient flow in an evolving landscape: Interpretation and time evolution of its generating functional; Frontiers Media S.A.; Frontiers in Physics; 4; 52; 18-1-2017; 1-10
1387-3326
1572-9419
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3389/fphy.2016.00052
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fphy.2016.00052
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Frontiers Media S.A.
publisher.none.fl_str_mv Frontiers Media S.A.
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613157412143104
score 13.070432