An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations
- Autores
- Armentano, Maria Gabriela; Padra, Claudio; Rodríguez, R.; Scheble, Mario
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we introduce an hp finite element method to solve a two-dimensional fluid-structure spectral problem. This problem arises from the computation of the vibration modes of a bundle of parallel tubes immersed in an incompressible fluid. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an a posteriori error estimator of the residual type which can be computed locally from the approximate eigenpair. We show its reliability and efficiency by proving that the estimator is equivalent to the energy norm of the error up to higher order terms, the equivalence constant of the efficiency estimate being suboptimal in that it depends on the polynomial degree. We present an hp adaptive algorithm and several numerical tests which show the performance of the scheme, including some numerical evidence of exponential convergence.
Fil: Armentano, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Padra, Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Rodríguez, R.. Universidad de Concepción; Chile
Fil: Scheble, Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina - Materia
-
A Posteriori Error Estimates
Finite Elements
Fluid-Structure Interaction
Hp Version
Spectral Approximation
Vibration Problem - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/69130
Ver los metadatos del registro completo
id |
CONICETDig_73dbf005e5cdbe04629073bbe451fb3e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/69130 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrationsArmentano, Maria GabrielaPadra, ClaudioRodríguez, R.Scheble, MarioA Posteriori Error EstimatesFinite ElementsFluid-Structure InteractionHp VersionSpectral ApproximationVibration Problemhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this paper we introduce an hp finite element method to solve a two-dimensional fluid-structure spectral problem. This problem arises from the computation of the vibration modes of a bundle of parallel tubes immersed in an incompressible fluid. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an a posteriori error estimator of the residual type which can be computed locally from the approximate eigenpair. We show its reliability and efficiency by proving that the estimator is equivalent to the energy norm of the error up to higher order terms, the equivalence constant of the efficiency estimate being suboptimal in that it depends on the polynomial degree. We present an hp adaptive algorithm and several numerical tests which show the performance of the scheme, including some numerical evidence of exponential convergence.Fil: Armentano, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Padra, Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Rodríguez, R.. Universidad de Concepción; ChileFil: Scheble, Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaElsevier Science Sa2011-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/69130Armentano, Maria Gabriela; Padra, Claudio; Rodríguez, R.; Scheble, Mario; An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations; Elsevier Science Sa; Computer Methods in Applied Mechanics and Engineering; 200; 1-4; 1-2011; 178-1880045-7825CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0045782510002367info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2010.08.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:09:18Zoai:ri.conicet.gov.ar:11336/69130instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:09:18.7CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations |
title |
An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations |
spellingShingle |
An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations Armentano, Maria Gabriela A Posteriori Error Estimates Finite Elements Fluid-Structure Interaction Hp Version Spectral Approximation Vibration Problem |
title_short |
An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations |
title_full |
An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations |
title_fullStr |
An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations |
title_full_unstemmed |
An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations |
title_sort |
An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations |
dc.creator.none.fl_str_mv |
Armentano, Maria Gabriela Padra, Claudio Rodríguez, R. Scheble, Mario |
author |
Armentano, Maria Gabriela |
author_facet |
Armentano, Maria Gabriela Padra, Claudio Rodríguez, R. Scheble, Mario |
author_role |
author |
author2 |
Padra, Claudio Rodríguez, R. Scheble, Mario |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
A Posteriori Error Estimates Finite Elements Fluid-Structure Interaction Hp Version Spectral Approximation Vibration Problem |
topic |
A Posteriori Error Estimates Finite Elements Fluid-Structure Interaction Hp Version Spectral Approximation Vibration Problem |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we introduce an hp finite element method to solve a two-dimensional fluid-structure spectral problem. This problem arises from the computation of the vibration modes of a bundle of parallel tubes immersed in an incompressible fluid. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an a posteriori error estimator of the residual type which can be computed locally from the approximate eigenpair. We show its reliability and efficiency by proving that the estimator is equivalent to the energy norm of the error up to higher order terms, the equivalence constant of the efficiency estimate being suboptimal in that it depends on the polynomial degree. We present an hp adaptive algorithm and several numerical tests which show the performance of the scheme, including some numerical evidence of exponential convergence. Fil: Armentano, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Padra, Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina Fil: Rodríguez, R.. Universidad de Concepción; Chile Fil: Scheble, Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina |
description |
In this paper we introduce an hp finite element method to solve a two-dimensional fluid-structure spectral problem. This problem arises from the computation of the vibration modes of a bundle of parallel tubes immersed in an incompressible fluid. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an a posteriori error estimator of the residual type which can be computed locally from the approximate eigenpair. We show its reliability and efficiency by proving that the estimator is equivalent to the energy norm of the error up to higher order terms, the equivalence constant of the efficiency estimate being suboptimal in that it depends on the polynomial degree. We present an hp adaptive algorithm and several numerical tests which show the performance of the scheme, including some numerical evidence of exponential convergence. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/69130 Armentano, Maria Gabriela; Padra, Claudio; Rodríguez, R.; Scheble, Mario; An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations; Elsevier Science Sa; Computer Methods in Applied Mechanics and Engineering; 200; 1-4; 1-2011; 178-188 0045-7825 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/69130 |
identifier_str_mv |
Armentano, Maria Gabriela; Padra, Claudio; Rodríguez, R.; Scheble, Mario; An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations; Elsevier Science Sa; Computer Methods in Applied Mechanics and Engineering; 200; 1-4; 1-2011; 178-188 0045-7825 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0045782510002367 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2010.08.003 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Sa |
publisher.none.fl_str_mv |
Elsevier Science Sa |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083240633303040 |
score |
13.22299 |