An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations

Autores
Armentano, Maria Gabriela; Padra, Claudio; Rodríguez, R.; Scheble, Mario
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we introduce an hp finite element method to solve a two-dimensional fluid-structure spectral problem. This problem arises from the computation of the vibration modes of a bundle of parallel tubes immersed in an incompressible fluid. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an a posteriori error estimator of the residual type which can be computed locally from the approximate eigenpair. We show its reliability and efficiency by proving that the estimator is equivalent to the energy norm of the error up to higher order terms, the equivalence constant of the efficiency estimate being suboptimal in that it depends on the polynomial degree. We present an hp adaptive algorithm and several numerical tests which show the performance of the scheme, including some numerical evidence of exponential convergence.
Fil: Armentano, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Padra, Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Rodríguez, R.. Universidad de Concepción; Chile
Fil: Scheble, Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Materia
A Posteriori Error Estimates
Finite Elements
Fluid-Structure Interaction
Hp Version
Spectral Approximation
Vibration Problem
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/69130

id CONICETDig_73dbf005e5cdbe04629073bbe451fb3e
oai_identifier_str oai:ri.conicet.gov.ar:11336/69130
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrationsArmentano, Maria GabrielaPadra, ClaudioRodríguez, R.Scheble, MarioA Posteriori Error EstimatesFinite ElementsFluid-Structure InteractionHp VersionSpectral ApproximationVibration Problemhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this paper we introduce an hp finite element method to solve a two-dimensional fluid-structure spectral problem. This problem arises from the computation of the vibration modes of a bundle of parallel tubes immersed in an incompressible fluid. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an a posteriori error estimator of the residual type which can be computed locally from the approximate eigenpair. We show its reliability and efficiency by proving that the estimator is equivalent to the energy norm of the error up to higher order terms, the equivalence constant of the efficiency estimate being suboptimal in that it depends on the polynomial degree. We present an hp adaptive algorithm and several numerical tests which show the performance of the scheme, including some numerical evidence of exponential convergence.Fil: Armentano, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Padra, Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Rodríguez, R.. Universidad de Concepción; ChileFil: Scheble, Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaElsevier Science Sa2011-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/69130Armentano, Maria Gabriela; Padra, Claudio; Rodríguez, R.; Scheble, Mario; An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations; Elsevier Science Sa; Computer Methods in Applied Mechanics and Engineering; 200; 1-4; 1-2011; 178-1880045-7825CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0045782510002367info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2010.08.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:09:18Zoai:ri.conicet.gov.ar:11336/69130instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:09:18.7CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations
title An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations
spellingShingle An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations
Armentano, Maria Gabriela
A Posteriori Error Estimates
Finite Elements
Fluid-Structure Interaction
Hp Version
Spectral Approximation
Vibration Problem
title_short An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations
title_full An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations
title_fullStr An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations
title_full_unstemmed An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations
title_sort An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations
dc.creator.none.fl_str_mv Armentano, Maria Gabriela
Padra, Claudio
Rodríguez, R.
Scheble, Mario
author Armentano, Maria Gabriela
author_facet Armentano, Maria Gabriela
Padra, Claudio
Rodríguez, R.
Scheble, Mario
author_role author
author2 Padra, Claudio
Rodríguez, R.
Scheble, Mario
author2_role author
author
author
dc.subject.none.fl_str_mv A Posteriori Error Estimates
Finite Elements
Fluid-Structure Interaction
Hp Version
Spectral Approximation
Vibration Problem
topic A Posteriori Error Estimates
Finite Elements
Fluid-Structure Interaction
Hp Version
Spectral Approximation
Vibration Problem
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we introduce an hp finite element method to solve a two-dimensional fluid-structure spectral problem. This problem arises from the computation of the vibration modes of a bundle of parallel tubes immersed in an incompressible fluid. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an a posteriori error estimator of the residual type which can be computed locally from the approximate eigenpair. We show its reliability and efficiency by proving that the estimator is equivalent to the energy norm of the error up to higher order terms, the equivalence constant of the efficiency estimate being suboptimal in that it depends on the polynomial degree. We present an hp adaptive algorithm and several numerical tests which show the performance of the scheme, including some numerical evidence of exponential convergence.
Fil: Armentano, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Padra, Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Rodríguez, R.. Universidad de Concepción; Chile
Fil: Scheble, Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
description In this paper we introduce an hp finite element method to solve a two-dimensional fluid-structure spectral problem. This problem arises from the computation of the vibration modes of a bundle of parallel tubes immersed in an incompressible fluid. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an a posteriori error estimator of the residual type which can be computed locally from the approximate eigenpair. We show its reliability and efficiency by proving that the estimator is equivalent to the energy norm of the error up to higher order terms, the equivalence constant of the efficiency estimate being suboptimal in that it depends on the polynomial degree. We present an hp adaptive algorithm and several numerical tests which show the performance of the scheme, including some numerical evidence of exponential convergence.
publishDate 2011
dc.date.none.fl_str_mv 2011-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/69130
Armentano, Maria Gabriela; Padra, Claudio; Rodríguez, R.; Scheble, Mario; An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations; Elsevier Science Sa; Computer Methods in Applied Mechanics and Engineering; 200; 1-4; 1-2011; 178-188
0045-7825
CONICET Digital
CONICET
url http://hdl.handle.net/11336/69130
identifier_str_mv Armentano, Maria Gabriela; Padra, Claudio; Rodríguez, R.; Scheble, Mario; An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations; Elsevier Science Sa; Computer Methods in Applied Mechanics and Engineering; 200; 1-4; 1-2011; 178-188
0045-7825
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0045782510002367
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2010.08.003
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Sa
publisher.none.fl_str_mv Elsevier Science Sa
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083240633303040
score 13.22299