Supersonic Dislocation Bursts in Silicon

Autores
Hahn, E. N.; Zhao, S.; Bringa, Eduardo Marcial; Meyers, Marc A.
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 × 1012 cm-2 within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.
Fil: Hahn, E. N.. University of California at San Diego; Estados Unidos
Fil: Zhao, S.. University of California at San Diego; Estados Unidos
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos
Materia
DISLOCATIONS
SILICON
SUPERSONIC
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/59517

id CONICETDig_34761d9ad4d8786354829a8c52c81cd9
oai_identifier_str oai:ri.conicet.gov.ar:11336/59517
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Supersonic Dislocation Bursts in SiliconHahn, E. N.Zhao, S.Bringa, Eduardo MarcialMeyers, Marc A.DISLOCATIONSSILICONSUPERSONIChttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 × 1012 cm-2 within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.Fil: Hahn, E. N.. University of California at San Diego; Estados UnidosFil: Zhao, S.. University of California at San Diego; Estados UnidosFil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Meyers, Marc A.. University of California at San Diego; Estados UnidosNature Publishing Group2016-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59517Hahn, E. N.; Zhao, S.; Bringa, Eduardo Marcial; Meyers, Marc A.; Supersonic Dislocation Bursts in Silicon; Nature Publishing Group; Scientific Reports; 6; 6-2016; 1-72045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/srep26977info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/srep26977info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:39:39Zoai:ri.conicet.gov.ar:11336/59517instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:39:40.139CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Supersonic Dislocation Bursts in Silicon
title Supersonic Dislocation Bursts in Silicon
spellingShingle Supersonic Dislocation Bursts in Silicon
Hahn, E. N.
DISLOCATIONS
SILICON
SUPERSONIC
title_short Supersonic Dislocation Bursts in Silicon
title_full Supersonic Dislocation Bursts in Silicon
title_fullStr Supersonic Dislocation Bursts in Silicon
title_full_unstemmed Supersonic Dislocation Bursts in Silicon
title_sort Supersonic Dislocation Bursts in Silicon
dc.creator.none.fl_str_mv Hahn, E. N.
Zhao, S.
Bringa, Eduardo Marcial
Meyers, Marc A.
author Hahn, E. N.
author_facet Hahn, E. N.
Zhao, S.
Bringa, Eduardo Marcial
Meyers, Marc A.
author_role author
author2 Zhao, S.
Bringa, Eduardo Marcial
Meyers, Marc A.
author2_role author
author
author
dc.subject.none.fl_str_mv DISLOCATIONS
SILICON
SUPERSONIC
topic DISLOCATIONS
SILICON
SUPERSONIC
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 × 1012 cm-2 within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.
Fil: Hahn, E. N.. University of California at San Diego; Estados Unidos
Fil: Zhao, S.. University of California at San Diego; Estados Unidos
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos
description Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 × 1012 cm-2 within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.
publishDate 2016
dc.date.none.fl_str_mv 2016-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/59517
Hahn, E. N.; Zhao, S.; Bringa, Eduardo Marcial; Meyers, Marc A.; Supersonic Dislocation Bursts in Silicon; Nature Publishing Group; Scientific Reports; 6; 6-2016; 1-7
2045-2322
CONICET Digital
CONICET
url http://hdl.handle.net/11336/59517
identifier_str_mv Hahn, E. N.; Zhao, S.; Bringa, Eduardo Marcial; Meyers, Marc A.; Supersonic Dislocation Bursts in Silicon; Nature Publishing Group; Scientific Reports; 6; 6-2016; 1-7
2045-2322
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1038/srep26977
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/srep26977
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082883060498432
score 13.22299