Supersonic Dislocation Bursts in Silicon
- Autores
- Hahn, E. N.; Zhao, S.; Bringa, Eduardo Marcial; Meyers, Marc A.
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 × 1012 cm-2 within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.
Fil: Hahn, E. N.. University of California at San Diego; Estados Unidos
Fil: Zhao, S.. University of California at San Diego; Estados Unidos
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos - Materia
-
DISLOCATIONS
SILICON
SUPERSONIC - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59517
Ver los metadatos del registro completo
id |
CONICETDig_34761d9ad4d8786354829a8c52c81cd9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59517 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Supersonic Dislocation Bursts in SiliconHahn, E. N.Zhao, S.Bringa, Eduardo MarcialMeyers, Marc A.DISLOCATIONSSILICONSUPERSONIChttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 × 1012 cm-2 within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.Fil: Hahn, E. N.. University of California at San Diego; Estados UnidosFil: Zhao, S.. University of California at San Diego; Estados UnidosFil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Meyers, Marc A.. University of California at San Diego; Estados UnidosNature Publishing Group2016-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59517Hahn, E. N.; Zhao, S.; Bringa, Eduardo Marcial; Meyers, Marc A.; Supersonic Dislocation Bursts in Silicon; Nature Publishing Group; Scientific Reports; 6; 6-2016; 1-72045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/srep26977info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/srep26977info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:39:39Zoai:ri.conicet.gov.ar:11336/59517instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:39:40.139CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Supersonic Dislocation Bursts in Silicon |
title |
Supersonic Dislocation Bursts in Silicon |
spellingShingle |
Supersonic Dislocation Bursts in Silicon Hahn, E. N. DISLOCATIONS SILICON SUPERSONIC |
title_short |
Supersonic Dislocation Bursts in Silicon |
title_full |
Supersonic Dislocation Bursts in Silicon |
title_fullStr |
Supersonic Dislocation Bursts in Silicon |
title_full_unstemmed |
Supersonic Dislocation Bursts in Silicon |
title_sort |
Supersonic Dislocation Bursts in Silicon |
dc.creator.none.fl_str_mv |
Hahn, E. N. Zhao, S. Bringa, Eduardo Marcial Meyers, Marc A. |
author |
Hahn, E. N. |
author_facet |
Hahn, E. N. Zhao, S. Bringa, Eduardo Marcial Meyers, Marc A. |
author_role |
author |
author2 |
Zhao, S. Bringa, Eduardo Marcial Meyers, Marc A. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
DISLOCATIONS SILICON SUPERSONIC |
topic |
DISLOCATIONS SILICON SUPERSONIC |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 × 1012 cm-2 within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon. Fil: Hahn, E. N.. University of California at San Diego; Estados Unidos Fil: Zhao, S.. University of California at San Diego; Estados Unidos Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos |
description |
Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 × 1012 cm-2 within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59517 Hahn, E. N.; Zhao, S.; Bringa, Eduardo Marcial; Meyers, Marc A.; Supersonic Dislocation Bursts in Silicon; Nature Publishing Group; Scientific Reports; 6; 6-2016; 1-7 2045-2322 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/59517 |
identifier_str_mv |
Hahn, E. N.; Zhao, S.; Bringa, Eduardo Marcial; Meyers, Marc A.; Supersonic Dislocation Bursts in Silicon; Nature Publishing Group; Scientific Reports; 6; 6-2016; 1-7 2045-2322 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1038/srep26977 info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/srep26977 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082883060498432 |
score |
13.22299 |