A Class of {n}-Entire Schrödinger operators

Autores
Silva, Luis O.; Toloza, Julio Hugo
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study singular Schrödinger operators on a finite interval as selfadjoint extensions of a symmetric operator. We give sufficient conditions for the symmetric operator to be in the nn-entire class, which was defined in our previous work (Silva and Toloza in J Phys A Math Theor 46:025202, 2013) for some nn. As a consequence of this classification, we obtain a detailed spectral characterization for a wide class of radial Schrödinger operators. The results given here make use of de Branges Hilbert space techniques.
Fil: Silva, Luis O.. Universidad Nacional Autónoma de México; México
Fil: Toloza, Julio Hugo. Universidad Tecnológica Nacional. Facultad Regional Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Schrödinger Operators
De Branges Spaces
Spectral Analysis
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/34518

id CONICETDig_60e4dd87905e275398f10b3deed9d58c
oai_identifier_str oai:ri.conicet.gov.ar:11336/34518
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Class of {n}-Entire Schrödinger operatorsSilva, Luis O.Toloza, Julio HugoSchrödinger OperatorsDe Branges SpacesSpectral Analysishttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study singular Schrödinger operators on a finite interval as selfadjoint extensions of a symmetric operator. We give sufficient conditions for the symmetric operator to be in the nn-entire class, which was defined in our previous work (Silva and Toloza in J Phys A Math Theor 46:025202, 2013) for some nn. As a consequence of this classification, we obtain a detailed spectral characterization for a wide class of radial Schrödinger operators. The results given here make use of de Branges Hilbert space techniques.Fil: Silva, Luis O.. Universidad Nacional Autónoma de México; MéxicoFil: Toloza, Julio Hugo. Universidad Tecnológica Nacional. Facultad Regional Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/34518Silva, Luis O.; Toloza, Julio Hugo; A Class of {n}-Entire Schrödinger operators; Springer; Complex Analysis and Operator Theory; 8; 8; 9-2013; 1581-15991661-82541661-8262CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11785-013-0329-zinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11785-013-0329-zinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1304.5274info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:11Zoai:ri.conicet.gov.ar:11336/34518instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:12.209CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Class of {n}-Entire Schrödinger operators
title A Class of {n}-Entire Schrödinger operators
spellingShingle A Class of {n}-Entire Schrödinger operators
Silva, Luis O.
Schrödinger Operators
De Branges Spaces
Spectral Analysis
title_short A Class of {n}-Entire Schrödinger operators
title_full A Class of {n}-Entire Schrödinger operators
title_fullStr A Class of {n}-Entire Schrödinger operators
title_full_unstemmed A Class of {n}-Entire Schrödinger operators
title_sort A Class of {n}-Entire Schrödinger operators
dc.creator.none.fl_str_mv Silva, Luis O.
Toloza, Julio Hugo
author Silva, Luis O.
author_facet Silva, Luis O.
Toloza, Julio Hugo
author_role author
author2 Toloza, Julio Hugo
author2_role author
dc.subject.none.fl_str_mv Schrödinger Operators
De Branges Spaces
Spectral Analysis
topic Schrödinger Operators
De Branges Spaces
Spectral Analysis
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study singular Schrödinger operators on a finite interval as selfadjoint extensions of a symmetric operator. We give sufficient conditions for the symmetric operator to be in the nn-entire class, which was defined in our previous work (Silva and Toloza in J Phys A Math Theor 46:025202, 2013) for some nn. As a consequence of this classification, we obtain a detailed spectral characterization for a wide class of radial Schrödinger operators. The results given here make use of de Branges Hilbert space techniques.
Fil: Silva, Luis O.. Universidad Nacional Autónoma de México; México
Fil: Toloza, Julio Hugo. Universidad Tecnológica Nacional. Facultad Regional Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We study singular Schrödinger operators on a finite interval as selfadjoint extensions of a symmetric operator. We give sufficient conditions for the symmetric operator to be in the nn-entire class, which was defined in our previous work (Silva and Toloza in J Phys A Math Theor 46:025202, 2013) for some nn. As a consequence of this classification, we obtain a detailed spectral characterization for a wide class of radial Schrödinger operators. The results given here make use of de Branges Hilbert space techniques.
publishDate 2013
dc.date.none.fl_str_mv 2013-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/34518
Silva, Luis O.; Toloza, Julio Hugo; A Class of {n}-Entire Schrödinger operators; Springer; Complex Analysis and Operator Theory; 8; 8; 9-2013; 1581-1599
1661-8254
1661-8262
CONICET Digital
CONICET
url http://hdl.handle.net/11336/34518
identifier_str_mv Silva, Luis O.; Toloza, Julio Hugo; A Class of {n}-Entire Schrödinger operators; Springer; Complex Analysis and Operator Theory; 8; 8; 9-2013; 1581-1599
1661-8254
1661-8262
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s11785-013-0329-z
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11785-013-0329-z
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1304.5274
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613420480987136
score 13.070432