The class of n-entire operators

Autores
Silva, Luis O.; Toloza, Julio Hugo
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We introduce a classification of simple, regular, closed symmetric operators with deficiency indices (1, 1) according to a geometric criterion that extends the classical notions of entire operators and entire operators in the generalized sense due to M G Krein. We show that these classes of operators have several distinctive properties, some of them related to the spectra of their canonical self-adjoint extensions. In particular, we provide necessary and sufficient conditions on the spectra of two canonical self-adjoint extensions of an operator for it to belong to one of our classes. Our discussion is based on some recent results in the theory of de Branges spaces.
Fil: Silva, Luis O.. Universidad Nacional Autónoma de México; México
Fil: Toloza, Julio Hugo. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Operator Theory
Spectral Methods
Symmetric And Selfadjoint Operators (Unbounded)
Applications of Operator Theory
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/22734

id CONICETDig_5dbef6829792478b456f8f3d44e11013
oai_identifier_str oai:ri.conicet.gov.ar:11336/22734
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The class of n-entire operatorsSilva, Luis O.Toloza, Julio HugoOperator TheorySpectral MethodsSymmetric And Selfadjoint Operators (Unbounded)Applications of Operator Theoryhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce a classification of simple, regular, closed symmetric operators with deficiency indices (1, 1) according to a geometric criterion that extends the classical notions of entire operators and entire operators in the generalized sense due to M G Krein. We show that these classes of operators have several distinctive properties, some of them related to the spectra of their canonical self-adjoint extensions. In particular, we provide necessary and sufficient conditions on the spectra of two canonical self-adjoint extensions of an operator for it to belong to one of our classes. Our discussion is based on some recent results in the theory of de Branges spaces.Fil: Silva, Luis O.. Universidad Nacional Autónoma de México; MéxicoFil: Toloza, Julio Hugo. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaIOP Publishing2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22734Silva, Luis O.; Toloza, Julio Hugo; The class of n-entire operators; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 46; 2; 1-2013; 1-23; 0252021751-8113CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/46/2/025202info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1751-8113/46/2/025202/metainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:07:56Zoai:ri.conicet.gov.ar:11336/22734instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:07:57.118CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The class of n-entire operators
title The class of n-entire operators
spellingShingle The class of n-entire operators
Silva, Luis O.
Operator Theory
Spectral Methods
Symmetric And Selfadjoint Operators (Unbounded)
Applications of Operator Theory
title_short The class of n-entire operators
title_full The class of n-entire operators
title_fullStr The class of n-entire operators
title_full_unstemmed The class of n-entire operators
title_sort The class of n-entire operators
dc.creator.none.fl_str_mv Silva, Luis O.
Toloza, Julio Hugo
author Silva, Luis O.
author_facet Silva, Luis O.
Toloza, Julio Hugo
author_role author
author2 Toloza, Julio Hugo
author2_role author
dc.subject.none.fl_str_mv Operator Theory
Spectral Methods
Symmetric And Selfadjoint Operators (Unbounded)
Applications of Operator Theory
topic Operator Theory
Spectral Methods
Symmetric And Selfadjoint Operators (Unbounded)
Applications of Operator Theory
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We introduce a classification of simple, regular, closed symmetric operators with deficiency indices (1, 1) according to a geometric criterion that extends the classical notions of entire operators and entire operators in the generalized sense due to M G Krein. We show that these classes of operators have several distinctive properties, some of them related to the spectra of their canonical self-adjoint extensions. In particular, we provide necessary and sufficient conditions on the spectra of two canonical self-adjoint extensions of an operator for it to belong to one of our classes. Our discussion is based on some recent results in the theory of de Branges spaces.
Fil: Silva, Luis O.. Universidad Nacional Autónoma de México; México
Fil: Toloza, Julio Hugo. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We introduce a classification of simple, regular, closed symmetric operators with deficiency indices (1, 1) according to a geometric criterion that extends the classical notions of entire operators and entire operators in the generalized sense due to M G Krein. We show that these classes of operators have several distinctive properties, some of them related to the spectra of their canonical self-adjoint extensions. In particular, we provide necessary and sufficient conditions on the spectra of two canonical self-adjoint extensions of an operator for it to belong to one of our classes. Our discussion is based on some recent results in the theory of de Branges spaces.
publishDate 2013
dc.date.none.fl_str_mv 2013-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/22734
Silva, Luis O.; Toloza, Julio Hugo; The class of n-entire operators; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 46; 2; 1-2013; 1-23; 025202
1751-8113
CONICET Digital
CONICET
url http://hdl.handle.net/11336/22734
identifier_str_mv Silva, Luis O.; Toloza, Julio Hugo; The class of n-entire operators; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 46; 2; 1-2013; 1-23; 025202
1751-8113
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/46/2/025202
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1751-8113/46/2/025202/meta
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980366529331200
score 13.004268