The class of n-entire operators
- Autores
- Silva, Luis O.; Toloza, Julio Hugo
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce a classification of simple, regular, closed symmetric operators with deficiency indices (1, 1) according to a geometric criterion that extends the classical notions of entire operators and entire operators in the generalized sense due to M G Krein. We show that these classes of operators have several distinctive properties, some of them related to the spectra of their canonical self-adjoint extensions. In particular, we provide necessary and sufficient conditions on the spectra of two canonical self-adjoint extensions of an operator for it to belong to one of our classes. Our discussion is based on some recent results in the theory of de Branges spaces.
Fil: Silva, Luis O.. Universidad Nacional Autónoma de México; México
Fil: Toloza, Julio Hugo. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Operator Theory
Spectral Methods
Symmetric And Selfadjoint Operators (Unbounded)
Applications of Operator Theory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/22734
Ver los metadatos del registro completo
id |
CONICETDig_5dbef6829792478b456f8f3d44e11013 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/22734 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The class of n-entire operatorsSilva, Luis O.Toloza, Julio HugoOperator TheorySpectral MethodsSymmetric And Selfadjoint Operators (Unbounded)Applications of Operator Theoryhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce a classification of simple, regular, closed symmetric operators with deficiency indices (1, 1) according to a geometric criterion that extends the classical notions of entire operators and entire operators in the generalized sense due to M G Krein. We show that these classes of operators have several distinctive properties, some of them related to the spectra of their canonical self-adjoint extensions. In particular, we provide necessary and sufficient conditions on the spectra of two canonical self-adjoint extensions of an operator for it to belong to one of our classes. Our discussion is based on some recent results in the theory of de Branges spaces.Fil: Silva, Luis O.. Universidad Nacional Autónoma de México; MéxicoFil: Toloza, Julio Hugo. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaIOP Publishing2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22734Silva, Luis O.; Toloza, Julio Hugo; The class of n-entire operators; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 46; 2; 1-2013; 1-23; 0252021751-8113CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/46/2/025202info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1751-8113/46/2/025202/metainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:07:56Zoai:ri.conicet.gov.ar:11336/22734instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:07:57.118CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The class of n-entire operators |
title |
The class of n-entire operators |
spellingShingle |
The class of n-entire operators Silva, Luis O. Operator Theory Spectral Methods Symmetric And Selfadjoint Operators (Unbounded) Applications of Operator Theory |
title_short |
The class of n-entire operators |
title_full |
The class of n-entire operators |
title_fullStr |
The class of n-entire operators |
title_full_unstemmed |
The class of n-entire operators |
title_sort |
The class of n-entire operators |
dc.creator.none.fl_str_mv |
Silva, Luis O. Toloza, Julio Hugo |
author |
Silva, Luis O. |
author_facet |
Silva, Luis O. Toloza, Julio Hugo |
author_role |
author |
author2 |
Toloza, Julio Hugo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Operator Theory Spectral Methods Symmetric And Selfadjoint Operators (Unbounded) Applications of Operator Theory |
topic |
Operator Theory Spectral Methods Symmetric And Selfadjoint Operators (Unbounded) Applications of Operator Theory |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce a classification of simple, regular, closed symmetric operators with deficiency indices (1, 1) according to a geometric criterion that extends the classical notions of entire operators and entire operators in the generalized sense due to M G Krein. We show that these classes of operators have several distinctive properties, some of them related to the spectra of their canonical self-adjoint extensions. In particular, we provide necessary and sufficient conditions on the spectra of two canonical self-adjoint extensions of an operator for it to belong to one of our classes. Our discussion is based on some recent results in the theory of de Branges spaces. Fil: Silva, Luis O.. Universidad Nacional Autónoma de México; México Fil: Toloza, Julio Hugo. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We introduce a classification of simple, regular, closed symmetric operators with deficiency indices (1, 1) according to a geometric criterion that extends the classical notions of entire operators and entire operators in the generalized sense due to M G Krein. We show that these classes of operators have several distinctive properties, some of them related to the spectra of their canonical self-adjoint extensions. In particular, we provide necessary and sufficient conditions on the spectra of two canonical self-adjoint extensions of an operator for it to belong to one of our classes. Our discussion is based on some recent results in the theory of de Branges spaces. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/22734 Silva, Luis O.; Toloza, Julio Hugo; The class of n-entire operators; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 46; 2; 1-2013; 1-23; 025202 1751-8113 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/22734 |
identifier_str_mv |
Silva, Luis O.; Toloza, Julio Hugo; The class of n-entire operators; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 46; 2; 1-2013; 1-23; 025202 1751-8113 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/46/2/025202 info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1751-8113/46/2/025202/meta |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980366529331200 |
score |
13.004268 |