On dB spaces with nondensely defined multiplication operator and the existence of zero-free functions

Autores
Silva, Luis O.; Toloza, Julio Hugo
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we consider de Branges spaces where the multiplication operator by the independent variable is not densely defined. First, we study the canonical selfadjoint extensions of the multiplication operator as a family of rank-one perturbations from the viewpoint of the theory of de Branges spaces. Then, on the basis of the obtained results, we provide new necessary and sufficient conditions for a real, zero-free function to lie in a de Branges space.
Fil: Silva, Luis O.. Universidad Nacional Autónoma de México; México
Fil: Toloza, Julio Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Córdoba; Argentina
Materia
De Branges Spaces
Zero-Free Functions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/37283

id CONICETDig_461896dee0f66c061a282f563247d962
oai_identifier_str oai:ri.conicet.gov.ar:11336/37283
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On dB spaces with nondensely defined multiplication operator and the existence of zero-free functionsSilva, Luis O.Toloza, Julio HugoDe Branges SpacesZero-Free Functionshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we consider de Branges spaces where the multiplication operator by the independent variable is not densely defined. First, we study the canonical selfadjoint extensions of the multiplication operator as a family of rank-one perturbations from the viewpoint of the theory of de Branges spaces. Then, on the basis of the obtained results, we provide new necessary and sufficient conditions for a real, zero-free function to lie in a de Branges space.Fil: Silva, Luis O.. Universidad Nacional Autónoma de México; MéxicoFil: Toloza, Julio Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Córdoba; ArgentinaAcademic Press Inc Elsevier Science2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/37283Silva, Luis O.; Toloza, Julio Hugo; On dB spaces with nondensely defined multiplication operator and the existence of zero-free functions; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 421; 2; 1-2015; 996-10050022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2014.07.064info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X14007070info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:23:05Zoai:ri.conicet.gov.ar:11336/37283instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:23:05.761CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On dB spaces with nondensely defined multiplication operator and the existence of zero-free functions
title On dB spaces with nondensely defined multiplication operator and the existence of zero-free functions
spellingShingle On dB spaces with nondensely defined multiplication operator and the existence of zero-free functions
Silva, Luis O.
De Branges Spaces
Zero-Free Functions
title_short On dB spaces with nondensely defined multiplication operator and the existence of zero-free functions
title_full On dB spaces with nondensely defined multiplication operator and the existence of zero-free functions
title_fullStr On dB spaces with nondensely defined multiplication operator and the existence of zero-free functions
title_full_unstemmed On dB spaces with nondensely defined multiplication operator and the existence of zero-free functions
title_sort On dB spaces with nondensely defined multiplication operator and the existence of zero-free functions
dc.creator.none.fl_str_mv Silva, Luis O.
Toloza, Julio Hugo
author Silva, Luis O.
author_facet Silva, Luis O.
Toloza, Julio Hugo
author_role author
author2 Toloza, Julio Hugo
author2_role author
dc.subject.none.fl_str_mv De Branges Spaces
Zero-Free Functions
topic De Branges Spaces
Zero-Free Functions
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work we consider de Branges spaces where the multiplication operator by the independent variable is not densely defined. First, we study the canonical selfadjoint extensions of the multiplication operator as a family of rank-one perturbations from the viewpoint of the theory of de Branges spaces. Then, on the basis of the obtained results, we provide new necessary and sufficient conditions for a real, zero-free function to lie in a de Branges space.
Fil: Silva, Luis O.. Universidad Nacional Autónoma de México; México
Fil: Toloza, Julio Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Córdoba; Argentina
description In this work we consider de Branges spaces where the multiplication operator by the independent variable is not densely defined. First, we study the canonical selfadjoint extensions of the multiplication operator as a family of rank-one perturbations from the viewpoint of the theory of de Branges spaces. Then, on the basis of the obtained results, we provide new necessary and sufficient conditions for a real, zero-free function to lie in a de Branges space.
publishDate 2015
dc.date.none.fl_str_mv 2015-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/37283
Silva, Luis O.; Toloza, Julio Hugo; On dB spaces with nondensely defined multiplication operator and the existence of zero-free functions; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 421; 2; 1-2015; 996-1005
0022-247X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/37283
identifier_str_mv Silva, Luis O.; Toloza, Julio Hugo; On dB spaces with nondensely defined multiplication operator and the existence of zero-free functions; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 421; 2; 1-2015; 996-1005
0022-247X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2014.07.064
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X14007070
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083377938038784
score 13.22299