On dB spaces with nondensely defined multiplication operator and the existence of zero-free functions
- Autores
- Silva, Luis O.; Toloza, Julio Hugo
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we consider de Branges spaces where the multiplication operator by the independent variable is not densely defined. First, we study the canonical selfadjoint extensions of the multiplication operator as a family of rank-one perturbations from the viewpoint of the theory of de Branges spaces. Then, on the basis of the obtained results, we provide new necessary and sufficient conditions for a real, zero-free function to lie in a de Branges space.
Fil: Silva, Luis O.. Universidad Nacional Autónoma de México; México
Fil: Toloza, Julio Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Córdoba; Argentina - Materia
-
De Branges Spaces
Zero-Free Functions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/37283
Ver los metadatos del registro completo
id |
CONICETDig_461896dee0f66c061a282f563247d962 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/37283 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On dB spaces with nondensely defined multiplication operator and the existence of zero-free functionsSilva, Luis O.Toloza, Julio HugoDe Branges SpacesZero-Free Functionshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we consider de Branges spaces where the multiplication operator by the independent variable is not densely defined. First, we study the canonical selfadjoint extensions of the multiplication operator as a family of rank-one perturbations from the viewpoint of the theory of de Branges spaces. Then, on the basis of the obtained results, we provide new necessary and sufficient conditions for a real, zero-free function to lie in a de Branges space.Fil: Silva, Luis O.. Universidad Nacional Autónoma de México; MéxicoFil: Toloza, Julio Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Córdoba; ArgentinaAcademic Press Inc Elsevier Science2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/37283Silva, Luis O.; Toloza, Julio Hugo; On dB spaces with nondensely defined multiplication operator and the existence of zero-free functions; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 421; 2; 1-2015; 996-10050022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2014.07.064info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X14007070info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:23:05Zoai:ri.conicet.gov.ar:11336/37283instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:23:05.761CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On dB spaces with nondensely defined multiplication operator and the existence of zero-free functions |
title |
On dB spaces with nondensely defined multiplication operator and the existence of zero-free functions |
spellingShingle |
On dB spaces with nondensely defined multiplication operator and the existence of zero-free functions Silva, Luis O. De Branges Spaces Zero-Free Functions |
title_short |
On dB spaces with nondensely defined multiplication operator and the existence of zero-free functions |
title_full |
On dB spaces with nondensely defined multiplication operator and the existence of zero-free functions |
title_fullStr |
On dB spaces with nondensely defined multiplication operator and the existence of zero-free functions |
title_full_unstemmed |
On dB spaces with nondensely defined multiplication operator and the existence of zero-free functions |
title_sort |
On dB spaces with nondensely defined multiplication operator and the existence of zero-free functions |
dc.creator.none.fl_str_mv |
Silva, Luis O. Toloza, Julio Hugo |
author |
Silva, Luis O. |
author_facet |
Silva, Luis O. Toloza, Julio Hugo |
author_role |
author |
author2 |
Toloza, Julio Hugo |
author2_role |
author |
dc.subject.none.fl_str_mv |
De Branges Spaces Zero-Free Functions |
topic |
De Branges Spaces Zero-Free Functions |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work we consider de Branges spaces where the multiplication operator by the independent variable is not densely defined. First, we study the canonical selfadjoint extensions of the multiplication operator as a family of rank-one perturbations from the viewpoint of the theory of de Branges spaces. Then, on the basis of the obtained results, we provide new necessary and sufficient conditions for a real, zero-free function to lie in a de Branges space. Fil: Silva, Luis O.. Universidad Nacional Autónoma de México; México Fil: Toloza, Julio Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Córdoba; Argentina |
description |
In this work we consider de Branges spaces where the multiplication operator by the independent variable is not densely defined. First, we study the canonical selfadjoint extensions of the multiplication operator as a family of rank-one perturbations from the viewpoint of the theory of de Branges spaces. Then, on the basis of the obtained results, we provide new necessary and sufficient conditions for a real, zero-free function to lie in a de Branges space. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/37283 Silva, Luis O.; Toloza, Julio Hugo; On dB spaces with nondensely defined multiplication operator and the existence of zero-free functions; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 421; 2; 1-2015; 996-1005 0022-247X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/37283 |
identifier_str_mv |
Silva, Luis O.; Toloza, Julio Hugo; On dB spaces with nondensely defined multiplication operator and the existence of zero-free functions; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 421; 2; 1-2015; 996-1005 0022-247X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2014.07.064 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X14007070 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083377938038784 |
score |
13.22299 |