Boundedness of fractional operators associated with Schrödinger operators on weighted variable Lebesgue spaces via extrapolation

Autores
Ayala, Maria Rocio Arantzazu; Cabral, Enrique Adrian
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we obtain boundedness results for fractional operators associated with Schrödinger operators L = −Δ+V on weighted variable Lebesgue spaces. These operators include fractional integrals and their respective commutators. In particular, we obtain weighted inequalities of the type Lp(·)-Lq(·) and estimates of the type Lp(·)-Lipschitz variable integral spaces. For this purpose, we developed extrapolation results that allow us to obtain boundedness results of the type described above in the variable setting by starting from analogous inequalities in the classical context. Such extrapolation results generalize what was done by Harboure, Macías, and Segovia [Amer. J. Math. 110 no. 3 (1988), 383–397], and by Bongioanni, Cabral, and Harboure [Potential Anal. 38 no. 4 (2013), 1207–1232], for the classic case, that is, V ≡ 0 and p(·) constant, respectively.
Fil: Ayala, Maria Rocio Arantzazu. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Cabral, Enrique Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
Materia
EXTRAPOLATION
FRACTIONAL OPERATORS
SCHRÖDINGER OPERATOR
VARIABLE LEBESGUE SPACES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/233458

id CONICETDig_f168d77ca2d3b729c790b48b38dfd08f
oai_identifier_str oai:ri.conicet.gov.ar:11336/233458
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Boundedness of fractional operators associated with Schrödinger operators on weighted variable Lebesgue spaces via extrapolationAyala, Maria Rocio ArantzazuCabral, Enrique AdrianEXTRAPOLATIONFRACTIONAL OPERATORSSCHRÖDINGER OPERATORVARIABLE LEBESGUE SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we obtain boundedness results for fractional operators associated with Schrödinger operators L = −Δ+V on weighted variable Lebesgue spaces. These operators include fractional integrals and their respective commutators. In particular, we obtain weighted inequalities of the type Lp(·)-Lq(·) and estimates of the type Lp(·)-Lipschitz variable integral spaces. For this purpose, we developed extrapolation results that allow us to obtain boundedness results of the type described above in the variable setting by starting from analogous inequalities in the classical context. Such extrapolation results generalize what was done by Harboure, Macías, and Segovia [Amer. J. Math. 110 no. 3 (1988), 383–397], and by Bongioanni, Cabral, and Harboure [Potential Anal. 38 no. 4 (2013), 1207–1232], for the classic case, that is, V ≡ 0 and p(·) constant, respectively.Fil: Ayala, Maria Rocio Arantzazu. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Cabral, Enrique Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaUnión Matemática Argentina2023-09-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/233458Ayala, Maria Rocio Arantzazu; Cabral, Enrique Adrian; Boundedness of fractional operators associated with Schrödinger operators on weighted variable Lebesgue spaces via extrapolation; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 66; 1; 21-9-2023; 35-670041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.4347info:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v66n1a02info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:01:30Zoai:ri.conicet.gov.ar:11336/233458instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:01:30.812CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Boundedness of fractional operators associated with Schrödinger operators on weighted variable Lebesgue spaces via extrapolation
title Boundedness of fractional operators associated with Schrödinger operators on weighted variable Lebesgue spaces via extrapolation
spellingShingle Boundedness of fractional operators associated with Schrödinger operators on weighted variable Lebesgue spaces via extrapolation
Ayala, Maria Rocio Arantzazu
EXTRAPOLATION
FRACTIONAL OPERATORS
SCHRÖDINGER OPERATOR
VARIABLE LEBESGUE SPACES
title_short Boundedness of fractional operators associated with Schrödinger operators on weighted variable Lebesgue spaces via extrapolation
title_full Boundedness of fractional operators associated with Schrödinger operators on weighted variable Lebesgue spaces via extrapolation
title_fullStr Boundedness of fractional operators associated with Schrödinger operators on weighted variable Lebesgue spaces via extrapolation
title_full_unstemmed Boundedness of fractional operators associated with Schrödinger operators on weighted variable Lebesgue spaces via extrapolation
title_sort Boundedness of fractional operators associated with Schrödinger operators on weighted variable Lebesgue spaces via extrapolation
dc.creator.none.fl_str_mv Ayala, Maria Rocio Arantzazu
Cabral, Enrique Adrian
author Ayala, Maria Rocio Arantzazu
author_facet Ayala, Maria Rocio Arantzazu
Cabral, Enrique Adrian
author_role author
author2 Cabral, Enrique Adrian
author2_role author
dc.subject.none.fl_str_mv EXTRAPOLATION
FRACTIONAL OPERATORS
SCHRÖDINGER OPERATOR
VARIABLE LEBESGUE SPACES
topic EXTRAPOLATION
FRACTIONAL OPERATORS
SCHRÖDINGER OPERATOR
VARIABLE LEBESGUE SPACES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work we obtain boundedness results for fractional operators associated with Schrödinger operators L = −Δ+V on weighted variable Lebesgue spaces. These operators include fractional integrals and their respective commutators. In particular, we obtain weighted inequalities of the type Lp(·)-Lq(·) and estimates of the type Lp(·)-Lipschitz variable integral spaces. For this purpose, we developed extrapolation results that allow us to obtain boundedness results of the type described above in the variable setting by starting from analogous inequalities in the classical context. Such extrapolation results generalize what was done by Harboure, Macías, and Segovia [Amer. J. Math. 110 no. 3 (1988), 383–397], and by Bongioanni, Cabral, and Harboure [Potential Anal. 38 no. 4 (2013), 1207–1232], for the classic case, that is, V ≡ 0 and p(·) constant, respectively.
Fil: Ayala, Maria Rocio Arantzazu. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Cabral, Enrique Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
description In this work we obtain boundedness results for fractional operators associated with Schrödinger operators L = −Δ+V on weighted variable Lebesgue spaces. These operators include fractional integrals and their respective commutators. In particular, we obtain weighted inequalities of the type Lp(·)-Lq(·) and estimates of the type Lp(·)-Lipschitz variable integral spaces. For this purpose, we developed extrapolation results that allow us to obtain boundedness results of the type described above in the variable setting by starting from analogous inequalities in the classical context. Such extrapolation results generalize what was done by Harboure, Macías, and Segovia [Amer. J. Math. 110 no. 3 (1988), 383–397], and by Bongioanni, Cabral, and Harboure [Potential Anal. 38 no. 4 (2013), 1207–1232], for the classic case, that is, V ≡ 0 and p(·) constant, respectively.
publishDate 2023
dc.date.none.fl_str_mv 2023-09-21
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/233458
Ayala, Maria Rocio Arantzazu; Cabral, Enrique Adrian; Boundedness of fractional operators associated with Schrödinger operators on weighted variable Lebesgue spaces via extrapolation; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 66; 1; 21-9-2023; 35-67
0041-6932
1669-9637
CONICET Digital
CONICET
url http://hdl.handle.net/11336/233458
identifier_str_mv Ayala, Maria Rocio Arantzazu; Cabral, Enrique Adrian; Boundedness of fractional operators associated with Schrödinger operators on weighted variable Lebesgue spaces via extrapolation; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 66; 1; 21-9-2023; 35-67
0041-6932
1669-9637
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.4347
info:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v66n1a02
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Unión Matemática Argentina
publisher.none.fl_str_mv Unión Matemática Argentina
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842979953734320128
score 12.993085