Boundedness of fractional operators associated with Schrödinger operators on weighted variable Lebesgue spaces via extrapolation
- Autores
- Ayala, Maria Rocio Arantzazu; Cabral, Enrique Adrian
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we obtain boundedness results for fractional operators associated with Schrödinger operators L = −Δ+V on weighted variable Lebesgue spaces. These operators include fractional integrals and their respective commutators. In particular, we obtain weighted inequalities of the type Lp(·)-Lq(·) and estimates of the type Lp(·)-Lipschitz variable integral spaces. For this purpose, we developed extrapolation results that allow us to obtain boundedness results of the type described above in the variable setting by starting from analogous inequalities in the classical context. Such extrapolation results generalize what was done by Harboure, Macías, and Segovia [Amer. J. Math. 110 no. 3 (1988), 383–397], and by Bongioanni, Cabral, and Harboure [Potential Anal. 38 no. 4 (2013), 1207–1232], for the classic case, that is, V ≡ 0 and p(·) constant, respectively.
Fil: Ayala, Maria Rocio Arantzazu. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Cabral, Enrique Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina - Materia
-
EXTRAPOLATION
FRACTIONAL OPERATORS
SCHRÖDINGER OPERATOR
VARIABLE LEBESGUE SPACES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/233458
Ver los metadatos del registro completo
id |
CONICETDig_f168d77ca2d3b729c790b48b38dfd08f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/233458 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Boundedness of fractional operators associated with Schrödinger operators on weighted variable Lebesgue spaces via extrapolationAyala, Maria Rocio ArantzazuCabral, Enrique AdrianEXTRAPOLATIONFRACTIONAL OPERATORSSCHRÖDINGER OPERATORVARIABLE LEBESGUE SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we obtain boundedness results for fractional operators associated with Schrödinger operators L = −Δ+V on weighted variable Lebesgue spaces. These operators include fractional integrals and their respective commutators. In particular, we obtain weighted inequalities of the type Lp(·)-Lq(·) and estimates of the type Lp(·)-Lipschitz variable integral spaces. For this purpose, we developed extrapolation results that allow us to obtain boundedness results of the type described above in the variable setting by starting from analogous inequalities in the classical context. Such extrapolation results generalize what was done by Harboure, Macías, and Segovia [Amer. J. Math. 110 no. 3 (1988), 383–397], and by Bongioanni, Cabral, and Harboure [Potential Anal. 38 no. 4 (2013), 1207–1232], for the classic case, that is, V ≡ 0 and p(·) constant, respectively.Fil: Ayala, Maria Rocio Arantzazu. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Cabral, Enrique Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaUnión Matemática Argentina2023-09-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/233458Ayala, Maria Rocio Arantzazu; Cabral, Enrique Adrian; Boundedness of fractional operators associated with Schrödinger operators on weighted variable Lebesgue spaces via extrapolation; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 66; 1; 21-9-2023; 35-670041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.4347info:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v66n1a02info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:01:30Zoai:ri.conicet.gov.ar:11336/233458instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:01:30.812CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Boundedness of fractional operators associated with Schrödinger operators on weighted variable Lebesgue spaces via extrapolation |
title |
Boundedness of fractional operators associated with Schrödinger operators on weighted variable Lebesgue spaces via extrapolation |
spellingShingle |
Boundedness of fractional operators associated with Schrödinger operators on weighted variable Lebesgue spaces via extrapolation Ayala, Maria Rocio Arantzazu EXTRAPOLATION FRACTIONAL OPERATORS SCHRÖDINGER OPERATOR VARIABLE LEBESGUE SPACES |
title_short |
Boundedness of fractional operators associated with Schrödinger operators on weighted variable Lebesgue spaces via extrapolation |
title_full |
Boundedness of fractional operators associated with Schrödinger operators on weighted variable Lebesgue spaces via extrapolation |
title_fullStr |
Boundedness of fractional operators associated with Schrödinger operators on weighted variable Lebesgue spaces via extrapolation |
title_full_unstemmed |
Boundedness of fractional operators associated with Schrödinger operators on weighted variable Lebesgue spaces via extrapolation |
title_sort |
Boundedness of fractional operators associated with Schrödinger operators on weighted variable Lebesgue spaces via extrapolation |
dc.creator.none.fl_str_mv |
Ayala, Maria Rocio Arantzazu Cabral, Enrique Adrian |
author |
Ayala, Maria Rocio Arantzazu |
author_facet |
Ayala, Maria Rocio Arantzazu Cabral, Enrique Adrian |
author_role |
author |
author2 |
Cabral, Enrique Adrian |
author2_role |
author |
dc.subject.none.fl_str_mv |
EXTRAPOLATION FRACTIONAL OPERATORS SCHRÖDINGER OPERATOR VARIABLE LEBESGUE SPACES |
topic |
EXTRAPOLATION FRACTIONAL OPERATORS SCHRÖDINGER OPERATOR VARIABLE LEBESGUE SPACES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work we obtain boundedness results for fractional operators associated with Schrödinger operators L = −Δ+V on weighted variable Lebesgue spaces. These operators include fractional integrals and their respective commutators. In particular, we obtain weighted inequalities of the type Lp(·)-Lq(·) and estimates of the type Lp(·)-Lipschitz variable integral spaces. For this purpose, we developed extrapolation results that allow us to obtain boundedness results of the type described above in the variable setting by starting from analogous inequalities in the classical context. Such extrapolation results generalize what was done by Harboure, Macías, and Segovia [Amer. J. Math. 110 no. 3 (1988), 383–397], and by Bongioanni, Cabral, and Harboure [Potential Anal. 38 no. 4 (2013), 1207–1232], for the classic case, that is, V ≡ 0 and p(·) constant, respectively. Fil: Ayala, Maria Rocio Arantzazu. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina Fil: Cabral, Enrique Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina |
description |
In this work we obtain boundedness results for fractional operators associated with Schrödinger operators L = −Δ+V on weighted variable Lebesgue spaces. These operators include fractional integrals and their respective commutators. In particular, we obtain weighted inequalities of the type Lp(·)-Lq(·) and estimates of the type Lp(·)-Lipschitz variable integral spaces. For this purpose, we developed extrapolation results that allow us to obtain boundedness results of the type described above in the variable setting by starting from analogous inequalities in the classical context. Such extrapolation results generalize what was done by Harboure, Macías, and Segovia [Amer. J. Math. 110 no. 3 (1988), 383–397], and by Bongioanni, Cabral, and Harboure [Potential Anal. 38 no. 4 (2013), 1207–1232], for the classic case, that is, V ≡ 0 and p(·) constant, respectively. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09-21 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/233458 Ayala, Maria Rocio Arantzazu; Cabral, Enrique Adrian; Boundedness of fractional operators associated with Schrödinger operators on weighted variable Lebesgue spaces via extrapolation; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 66; 1; 21-9-2023; 35-67 0041-6932 1669-9637 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/233458 |
identifier_str_mv |
Ayala, Maria Rocio Arantzazu; Cabral, Enrique Adrian; Boundedness of fractional operators associated with Schrödinger operators on weighted variable Lebesgue spaces via extrapolation; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 66; 1; 21-9-2023; 35-67 0041-6932 1669-9637 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.4347 info:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v66n1a02 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Unión Matemática Argentina |
publisher.none.fl_str_mv |
Unión Matemática Argentina |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842979953734320128 |
score |
12.993085 |