Remarks on general monotonic neighbourhood frames

Autores
Celani, Sergio Arturo; Menchón, María Paula
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we shall discuss some classes of general monotonic neighbourhood frames, or general m-frames. We shall study the classes of point-compact, image compact and replete general m-frames, and the relationships between them. The variety of Boolean algebras with a monotonic modal operator is dually equivalent to two classes of descriptive general m-frames. In this paper we shall clarify this phenomenon showing that there exists a bijective correspondence between these two classes. We shall also prove that the notions of point-compact, and image-compact monotonic frames are preserved by strong bounded morphisms. Also, we will prove some preservation results on general subframes.
Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
Fil: Menchón, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina
Materia
Boole Algebras
Topology
Monotonic Modal Logic
Neighbourhood Frames
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/58119

id CONICETDig_60352353ae0d9ffa6e4057cf1641540a
oai_identifier_str oai:ri.conicet.gov.ar:11336/58119
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Remarks on general monotonic neighbourhood framesCelani, Sergio ArturoMenchón, María PaulaBoole AlgebrasTopologyMonotonic Modal LogicNeighbourhood Frameshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we shall discuss some classes of general monotonic neighbourhood frames, or general m-frames. We shall study the classes of point-compact, image compact and replete general m-frames, and the relationships between them. The variety of Boolean algebras with a monotonic modal operator is dually equivalent to two classes of descriptive general m-frames. In this paper we shall clarify this phenomenon showing that there exists a bijective correspondence between these two classes. We shall also prove that the notions of point-compact, and image-compact monotonic frames are preserved by strong bounded morphisms. Also, we will prove some preservation results on general subframes.Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; ArgentinaFil: Menchón, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; ArgentinaOld City Publishing Inc2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/58119Celani, Sergio Arturo; Menchón, María Paula; Remarks on general monotonic neighbourhood frames; Old City Publishing Inc; Journal of Multiple-Valued Logic and Soft Computing; 25; 4-5; 8-2015; 379-3981542-3980CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.oldcitypublishing.com/journals/mvlsc-home/mvlsc-issue-contents/mvlsc-volume-25-number-4-5-2015/mvlsc-25-4-5-p-379-398/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:53Zoai:ri.conicet.gov.ar:11336/58119instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:53.401CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Remarks on general monotonic neighbourhood frames
title Remarks on general monotonic neighbourhood frames
spellingShingle Remarks on general monotonic neighbourhood frames
Celani, Sergio Arturo
Boole Algebras
Topology
Monotonic Modal Logic
Neighbourhood Frames
title_short Remarks on general monotonic neighbourhood frames
title_full Remarks on general monotonic neighbourhood frames
title_fullStr Remarks on general monotonic neighbourhood frames
title_full_unstemmed Remarks on general monotonic neighbourhood frames
title_sort Remarks on general monotonic neighbourhood frames
dc.creator.none.fl_str_mv Celani, Sergio Arturo
Menchón, María Paula
author Celani, Sergio Arturo
author_facet Celani, Sergio Arturo
Menchón, María Paula
author_role author
author2 Menchón, María Paula
author2_role author
dc.subject.none.fl_str_mv Boole Algebras
Topology
Monotonic Modal Logic
Neighbourhood Frames
topic Boole Algebras
Topology
Monotonic Modal Logic
Neighbourhood Frames
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we shall discuss some classes of general monotonic neighbourhood frames, or general m-frames. We shall study the classes of point-compact, image compact and replete general m-frames, and the relationships between them. The variety of Boolean algebras with a monotonic modal operator is dually equivalent to two classes of descriptive general m-frames. In this paper we shall clarify this phenomenon showing that there exists a bijective correspondence between these two classes. We shall also prove that the notions of point-compact, and image-compact monotonic frames are preserved by strong bounded morphisms. Also, we will prove some preservation results on general subframes.
Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
Fil: Menchón, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina
description In this paper we shall discuss some classes of general monotonic neighbourhood frames, or general m-frames. We shall study the classes of point-compact, image compact and replete general m-frames, and the relationships between them. The variety of Boolean algebras with a monotonic modal operator is dually equivalent to two classes of descriptive general m-frames. In this paper we shall clarify this phenomenon showing that there exists a bijective correspondence between these two classes. We shall also prove that the notions of point-compact, and image-compact monotonic frames are preserved by strong bounded morphisms. Also, we will prove some preservation results on general subframes.
publishDate 2015
dc.date.none.fl_str_mv 2015-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/58119
Celani, Sergio Arturo; Menchón, María Paula; Remarks on general monotonic neighbourhood frames; Old City Publishing Inc; Journal of Multiple-Valued Logic and Soft Computing; 25; 4-5; 8-2015; 379-398
1542-3980
CONICET Digital
CONICET
url http://hdl.handle.net/11336/58119
identifier_str_mv Celani, Sergio Arturo; Menchón, María Paula; Remarks on general monotonic neighbourhood frames; Old City Publishing Inc; Journal of Multiple-Valued Logic and Soft Computing; 25; 4-5; 8-2015; 379-398
1542-3980
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.oldcitypublishing.com/journals/mvlsc-home/mvlsc-issue-contents/mvlsc-volume-25-number-4-5-2015/mvlsc-25-4-5-p-379-398/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/zip
application/pdf
dc.publisher.none.fl_str_mv Old City Publishing Inc
publisher.none.fl_str_mv Old City Publishing Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613412358717440
score 13.070432