Remarks on general monotonic neighbourhood frames
- Autores
- Celani, Sergio Arturo; Menchón, María Paula
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we shall discuss some classes of general monotonic neighbourhood frames, or general m-frames. We shall study the classes of point-compact, image compact and replete general m-frames, and the relationships between them. The variety of Boolean algebras with a monotonic modal operator is dually equivalent to two classes of descriptive general m-frames. In this paper we shall clarify this phenomenon showing that there exists a bijective correspondence between these two classes. We shall also prove that the notions of point-compact, and image-compact monotonic frames are preserved by strong bounded morphisms. Also, we will prove some preservation results on general subframes.
Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
Fil: Menchón, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina - Materia
-
Boole Algebras
Topology
Monotonic Modal Logic
Neighbourhood Frames - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/58119
Ver los metadatos del registro completo
id |
CONICETDig_60352353ae0d9ffa6e4057cf1641540a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/58119 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Remarks on general monotonic neighbourhood framesCelani, Sergio ArturoMenchón, María PaulaBoole AlgebrasTopologyMonotonic Modal LogicNeighbourhood Frameshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we shall discuss some classes of general monotonic neighbourhood frames, or general m-frames. We shall study the classes of point-compact, image compact and replete general m-frames, and the relationships between them. The variety of Boolean algebras with a monotonic modal operator is dually equivalent to two classes of descriptive general m-frames. In this paper we shall clarify this phenomenon showing that there exists a bijective correspondence between these two classes. We shall also prove that the notions of point-compact, and image-compact monotonic frames are preserved by strong bounded morphisms. Also, we will prove some preservation results on general subframes.Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; ArgentinaFil: Menchón, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; ArgentinaOld City Publishing Inc2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/58119Celani, Sergio Arturo; Menchón, María Paula; Remarks on general monotonic neighbourhood frames; Old City Publishing Inc; Journal of Multiple-Valued Logic and Soft Computing; 25; 4-5; 8-2015; 379-3981542-3980CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.oldcitypublishing.com/journals/mvlsc-home/mvlsc-issue-contents/mvlsc-volume-25-number-4-5-2015/mvlsc-25-4-5-p-379-398/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:53Zoai:ri.conicet.gov.ar:11336/58119instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:53.401CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Remarks on general monotonic neighbourhood frames |
title |
Remarks on general monotonic neighbourhood frames |
spellingShingle |
Remarks on general monotonic neighbourhood frames Celani, Sergio Arturo Boole Algebras Topology Monotonic Modal Logic Neighbourhood Frames |
title_short |
Remarks on general monotonic neighbourhood frames |
title_full |
Remarks on general monotonic neighbourhood frames |
title_fullStr |
Remarks on general monotonic neighbourhood frames |
title_full_unstemmed |
Remarks on general monotonic neighbourhood frames |
title_sort |
Remarks on general monotonic neighbourhood frames |
dc.creator.none.fl_str_mv |
Celani, Sergio Arturo Menchón, María Paula |
author |
Celani, Sergio Arturo |
author_facet |
Celani, Sergio Arturo Menchón, María Paula |
author_role |
author |
author2 |
Menchón, María Paula |
author2_role |
author |
dc.subject.none.fl_str_mv |
Boole Algebras Topology Monotonic Modal Logic Neighbourhood Frames |
topic |
Boole Algebras Topology Monotonic Modal Logic Neighbourhood Frames |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we shall discuss some classes of general monotonic neighbourhood frames, or general m-frames. We shall study the classes of point-compact, image compact and replete general m-frames, and the relationships between them. The variety of Boolean algebras with a monotonic modal operator is dually equivalent to two classes of descriptive general m-frames. In this paper we shall clarify this phenomenon showing that there exists a bijective correspondence between these two classes. We shall also prove that the notions of point-compact, and image-compact monotonic frames are preserved by strong bounded morphisms. Also, we will prove some preservation results on general subframes. Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina Fil: Menchón, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina |
description |
In this paper we shall discuss some classes of general monotonic neighbourhood frames, or general m-frames. We shall study the classes of point-compact, image compact and replete general m-frames, and the relationships between them. The variety of Boolean algebras with a monotonic modal operator is dually equivalent to two classes of descriptive general m-frames. In this paper we shall clarify this phenomenon showing that there exists a bijective correspondence between these two classes. We shall also prove that the notions of point-compact, and image-compact monotonic frames are preserved by strong bounded morphisms. Also, we will prove some preservation results on general subframes. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/58119 Celani, Sergio Arturo; Menchón, María Paula; Remarks on general monotonic neighbourhood frames; Old City Publishing Inc; Journal of Multiple-Valued Logic and Soft Computing; 25; 4-5; 8-2015; 379-398 1542-3980 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/58119 |
identifier_str_mv |
Celani, Sergio Arturo; Menchón, María Paula; Remarks on general monotonic neighbourhood frames; Old City Publishing Inc; Journal of Multiple-Valued Logic and Soft Computing; 25; 4-5; 8-2015; 379-398 1542-3980 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.oldcitypublishing.com/journals/mvlsc-home/mvlsc-issue-contents/mvlsc-volume-25-number-4-5-2015/mvlsc-25-4-5-p-379-398/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
Old City Publishing Inc |
publisher.none.fl_str_mv |
Old City Publishing Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613412358717440 |
score |
13.070432 |