Monotonic Distributive Semilattices
- Autores
- Celani, Sergio Arturo; Menchón, María Paula
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the study of algebras related to non-classical logics, (distributive) semilattices are always present in the background. For example, the algebraic semantic of the {→, ∧, ⊤}-fragment of intuitionistic logic is the variety of implicative meet-semilattices (Chellas 1980; Hansen 2003). In this paper we introduce and study the class of distributive meet-semilattices endowed with a monotonic modal operator m. We study the representation theory of these algebras using the theory of canonical extensions and we give a topological duality for them. Also, we show how our new duality extends to some particular subclasses.
Fil: Celani, Sergio Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina
Fil: Menchón, María Paula. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
DISTRIBUTIVE MEET SEMILATTICES
DS-SPACES
MODAL OPERATORS
MONOTONIC MODAL LOGICS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/96559
Ver los metadatos del registro completo
id |
CONICETDig_85d2d5ce00ddf3d8b642a2facd046fcb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/96559 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Monotonic Distributive SemilatticesCelani, Sergio ArturoMenchón, María PaulaDISTRIBUTIVE MEET SEMILATTICESDS-SPACESMODAL OPERATORSMONOTONIC MODAL LOGICShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In the study of algebras related to non-classical logics, (distributive) semilattices are always present in the background. For example, the algebraic semantic of the {→, ∧, ⊤}-fragment of intuitionistic logic is the variety of implicative meet-semilattices (Chellas 1980; Hansen 2003). In this paper we introduce and study the class of distributive meet-semilattices endowed with a monotonic modal operator m. We study the representation theory of these algebras using the theory of canonical extensions and we give a topological duality for them. Also, we show how our new duality extends to some particular subclasses.Fil: Celani, Sergio Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; ArgentinaFil: Menchón, María Paula. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2019-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/96559Celani, Sergio Arturo; Menchón, María Paula; Monotonic Distributive Semilattices; Springer; Order; 36; 3; 11-2019; 463-4860167-8094CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11083-018-9477-0info:eu-repo/semantics/altIdentifier/doi/10.1007/s11083-018-9477-0info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1810.08585info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:27:56Zoai:ri.conicet.gov.ar:11336/96559instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:27:57.094CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Monotonic Distributive Semilattices |
title |
Monotonic Distributive Semilattices |
spellingShingle |
Monotonic Distributive Semilattices Celani, Sergio Arturo DISTRIBUTIVE MEET SEMILATTICES DS-SPACES MODAL OPERATORS MONOTONIC MODAL LOGICS |
title_short |
Monotonic Distributive Semilattices |
title_full |
Monotonic Distributive Semilattices |
title_fullStr |
Monotonic Distributive Semilattices |
title_full_unstemmed |
Monotonic Distributive Semilattices |
title_sort |
Monotonic Distributive Semilattices |
dc.creator.none.fl_str_mv |
Celani, Sergio Arturo Menchón, María Paula |
author |
Celani, Sergio Arturo |
author_facet |
Celani, Sergio Arturo Menchón, María Paula |
author_role |
author |
author2 |
Menchón, María Paula |
author2_role |
author |
dc.subject.none.fl_str_mv |
DISTRIBUTIVE MEET SEMILATTICES DS-SPACES MODAL OPERATORS MONOTONIC MODAL LOGICS |
topic |
DISTRIBUTIVE MEET SEMILATTICES DS-SPACES MODAL OPERATORS MONOTONIC MODAL LOGICS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the study of algebras related to non-classical logics, (distributive) semilattices are always present in the background. For example, the algebraic semantic of the {→, ∧, ⊤}-fragment of intuitionistic logic is the variety of implicative meet-semilattices (Chellas 1980; Hansen 2003). In this paper we introduce and study the class of distributive meet-semilattices endowed with a monotonic modal operator m. We study the representation theory of these algebras using the theory of canonical extensions and we give a topological duality for them. Also, we show how our new duality extends to some particular subclasses. Fil: Celani, Sergio Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina Fil: Menchón, María Paula. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In the study of algebras related to non-classical logics, (distributive) semilattices are always present in the background. For example, the algebraic semantic of the {→, ∧, ⊤}-fragment of intuitionistic logic is the variety of implicative meet-semilattices (Chellas 1980; Hansen 2003). In this paper we introduce and study the class of distributive meet-semilattices endowed with a monotonic modal operator m. We study the representation theory of these algebras using the theory of canonical extensions and we give a topological duality for them. Also, we show how our new duality extends to some particular subclasses. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/96559 Celani, Sergio Arturo; Menchón, María Paula; Monotonic Distributive Semilattices; Springer; Order; 36; 3; 11-2019; 463-486 0167-8094 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/96559 |
identifier_str_mv |
Celani, Sergio Arturo; Menchón, María Paula; Monotonic Distributive Semilattices; Springer; Order; 36; 3; 11-2019; 463-486 0167-8094 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11083-018-9477-0 info:eu-repo/semantics/altIdentifier/doi/10.1007/s11083-018-9477-0 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1810.08585 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614282212278272 |
score |
13.070432 |