Some Logics in the Vicinity of Interpretability Logics

Autores
Celani, Sergio Arturo
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we shall define semantically some families of propositional modal logics related to the interpretability logic IL. We will introduce the logics BIL and BIL+ in the propositional language with a modal operator □ and a binary operator ⇒ such that BIL ⊆ BIL+ ⊆ IL. The logic BIL is generated by the relational structures ⟨X, R, N⟩, called basic frames, where ⟨X, R⟩ is a Kripke frame and ⟨X, N⟩ is a neighborhood frame. We will prove that the logic BIL+ is generated by the basic frames where the binary relation R is definable by the neighborhood relation N and, therefore, the neighborhood semantics is suitable to study the logic BIL+ and its extensions. We shall also study some axiomatic extensions of BIL and we will prove that these extensions are sound and complete with respect to a certain classes of basic frames. Finally, we prove that the logic BIL+ and some of its extensions are complete respect with the class of neighborhood frames.
Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
Materia
INTERPRETABILITY LOGIC,
KRIPKE FRAMES
NEIGHBOURHOOD FRAMES
VELTMAN SEMANTICS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/232307

id CONICETDig_f8251479f2b9a9bbb55444d211d14173
oai_identifier_str oai:ri.conicet.gov.ar:11336/232307
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Some Logics in the Vicinity of Interpretability LogicsCelani, Sergio ArturoINTERPRETABILITY LOGIC,KRIPKE FRAMESNEIGHBOURHOOD FRAMESVELTMAN SEMANTICShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we shall define semantically some families of propositional modal logics related to the interpretability logic IL. We will introduce the logics BIL and BIL+ in the propositional language with a modal operator □ and a binary operator ⇒ such that BIL ⊆ BIL+ ⊆ IL. The logic BIL is generated by the relational structures ⟨X, R, N⟩, called basic frames, where ⟨X, R⟩ is a Kripke frame and ⟨X, N⟩ is a neighborhood frame. We will prove that the logic BIL+ is generated by the basic frames where the binary relation R is definable by the neighborhood relation N and, therefore, the neighborhood semantics is suitable to study the logic BIL+ and its extensions. We shall also study some axiomatic extensions of BIL and we will prove that these extensions are sound and complete with respect to a certain classes of basic frames. Finally, we prove that the logic BIL+ and some of its extensions are complete respect with the class of neighborhood frames.Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; ArgentinaLodz University Press2023-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/232307Celani, Sergio Arturo; Some Logics in the Vicinity of Interpretability Logics; Lodz University Press; Bulletin Of The Section Of Logic; 11-2023; 1-210138-0680CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://czasopisma.uni.lodz.pl/bulletin/article/view/16580info:eu-repo/semantics/altIdentifier/doi/10.18778/0138-0680.2023.26info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:22:42Zoai:ri.conicet.gov.ar:11336/232307instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:22:42.798CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Some Logics in the Vicinity of Interpretability Logics
title Some Logics in the Vicinity of Interpretability Logics
spellingShingle Some Logics in the Vicinity of Interpretability Logics
Celani, Sergio Arturo
INTERPRETABILITY LOGIC,
KRIPKE FRAMES
NEIGHBOURHOOD FRAMES
VELTMAN SEMANTICS
title_short Some Logics in the Vicinity of Interpretability Logics
title_full Some Logics in the Vicinity of Interpretability Logics
title_fullStr Some Logics in the Vicinity of Interpretability Logics
title_full_unstemmed Some Logics in the Vicinity of Interpretability Logics
title_sort Some Logics in the Vicinity of Interpretability Logics
dc.creator.none.fl_str_mv Celani, Sergio Arturo
author Celani, Sergio Arturo
author_facet Celani, Sergio Arturo
author_role author
dc.subject.none.fl_str_mv INTERPRETABILITY LOGIC,
KRIPKE FRAMES
NEIGHBOURHOOD FRAMES
VELTMAN SEMANTICS
topic INTERPRETABILITY LOGIC,
KRIPKE FRAMES
NEIGHBOURHOOD FRAMES
VELTMAN SEMANTICS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we shall define semantically some families of propositional modal logics related to the interpretability logic IL. We will introduce the logics BIL and BIL+ in the propositional language with a modal operator □ and a binary operator ⇒ such that BIL ⊆ BIL+ ⊆ IL. The logic BIL is generated by the relational structures ⟨X, R, N⟩, called basic frames, where ⟨X, R⟩ is a Kripke frame and ⟨X, N⟩ is a neighborhood frame. We will prove that the logic BIL+ is generated by the basic frames where the binary relation R is definable by the neighborhood relation N and, therefore, the neighborhood semantics is suitable to study the logic BIL+ and its extensions. We shall also study some axiomatic extensions of BIL and we will prove that these extensions are sound and complete with respect to a certain classes of basic frames. Finally, we prove that the logic BIL+ and some of its extensions are complete respect with the class of neighborhood frames.
Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
description In this paper we shall define semantically some families of propositional modal logics related to the interpretability logic IL. We will introduce the logics BIL and BIL+ in the propositional language with a modal operator □ and a binary operator ⇒ such that BIL ⊆ BIL+ ⊆ IL. The logic BIL is generated by the relational structures ⟨X, R, N⟩, called basic frames, where ⟨X, R⟩ is a Kripke frame and ⟨X, N⟩ is a neighborhood frame. We will prove that the logic BIL+ is generated by the basic frames where the binary relation R is definable by the neighborhood relation N and, therefore, the neighborhood semantics is suitable to study the logic BIL+ and its extensions. We shall also study some axiomatic extensions of BIL and we will prove that these extensions are sound and complete with respect to a certain classes of basic frames. Finally, we prove that the logic BIL+ and some of its extensions are complete respect with the class of neighborhood frames.
publishDate 2023
dc.date.none.fl_str_mv 2023-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/232307
Celani, Sergio Arturo; Some Logics in the Vicinity of Interpretability Logics; Lodz University Press; Bulletin Of The Section Of Logic; 11-2023; 1-21
0138-0680
CONICET Digital
CONICET
url http://hdl.handle.net/11336/232307
identifier_str_mv Celani, Sergio Arturo; Some Logics in the Vicinity of Interpretability Logics; Lodz University Press; Bulletin Of The Section Of Logic; 11-2023; 1-21
0138-0680
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://czasopisma.uni.lodz.pl/bulletin/article/view/16580
info:eu-repo/semantics/altIdentifier/doi/10.18778/0138-0680.2023.26
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Lodz University Press
publisher.none.fl_str_mv Lodz University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614219257872384
score 13.070432