Properties of saturation in monotonic neighbourhood models and some applications
- Autores
- Celani, Sergio Arturo
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we shall discuss properties of saturation in monotonic neighbourhood models and study some applications, like a characterization of compact and modally saturated monotonic models and a characterization of the maximal Hennessy-Milner classes. We shall also show that our notion of modal saturation for monotonic models naturally extends the notion of modal saturation for Kripke models.
Fil: Celani, Sergio Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina - Materia
-
Monotonic Modal Logic
Monotonic Neighbourhood Frames And Models
M-Saturated Models
Kripke M-Saturated Models
Maximal Hennessy-Milner Classes of Monotonic Models - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/11312
Ver los metadatos del registro completo
id |
CONICETDig_9819c2b18a37647c0fa3a88e0c788eac |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/11312 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Properties of saturation in monotonic neighbourhood models and some applicationsCelani, Sergio ArturoMonotonic Modal LogicMonotonic Neighbourhood Frames And ModelsM-Saturated ModelsKripke M-Saturated ModelsMaximal Hennessy-Milner Classes of Monotonic Modelshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we shall discuss properties of saturation in monotonic neighbourhood models and study some applications, like a characterization of compact and modally saturated monotonic models and a characterization of the maximal Hennessy-Milner classes. We shall also show that our notion of modal saturation for monotonic models naturally extends the notion of modal saturation for Kripke models.Fil: Celani, Sergio Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires; ArgentinaSpringer2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11312Celani, Sergio Arturo; Properties of saturation in monotonic neighbourhood models and some applications; Springer; Studia Logica; 103; 4; 8-2015; 733-7550039-32151572-8730enginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s11225-014-9590-zinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-014-9590-zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:33:00Zoai:ri.conicet.gov.ar:11336/11312instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:33:01.2CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Properties of saturation in monotonic neighbourhood models and some applications |
title |
Properties of saturation in monotonic neighbourhood models and some applications |
spellingShingle |
Properties of saturation in monotonic neighbourhood models and some applications Celani, Sergio Arturo Monotonic Modal Logic Monotonic Neighbourhood Frames And Models M-Saturated Models Kripke M-Saturated Models Maximal Hennessy-Milner Classes of Monotonic Models |
title_short |
Properties of saturation in monotonic neighbourhood models and some applications |
title_full |
Properties of saturation in monotonic neighbourhood models and some applications |
title_fullStr |
Properties of saturation in monotonic neighbourhood models and some applications |
title_full_unstemmed |
Properties of saturation in monotonic neighbourhood models and some applications |
title_sort |
Properties of saturation in monotonic neighbourhood models and some applications |
dc.creator.none.fl_str_mv |
Celani, Sergio Arturo |
author |
Celani, Sergio Arturo |
author_facet |
Celani, Sergio Arturo |
author_role |
author |
dc.subject.none.fl_str_mv |
Monotonic Modal Logic Monotonic Neighbourhood Frames And Models M-Saturated Models Kripke M-Saturated Models Maximal Hennessy-Milner Classes of Monotonic Models |
topic |
Monotonic Modal Logic Monotonic Neighbourhood Frames And Models M-Saturated Models Kripke M-Saturated Models Maximal Hennessy-Milner Classes of Monotonic Models |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we shall discuss properties of saturation in monotonic neighbourhood models and study some applications, like a characterization of compact and modally saturated monotonic models and a characterization of the maximal Hennessy-Milner classes. We shall also show that our notion of modal saturation for monotonic models naturally extends the notion of modal saturation for Kripke models. Fil: Celani, Sergio Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina |
description |
In this paper we shall discuss properties of saturation in monotonic neighbourhood models and study some applications, like a characterization of compact and modally saturated monotonic models and a characterization of the maximal Hennessy-Milner classes. We shall also show that our notion of modal saturation for monotonic models naturally extends the notion of modal saturation for Kripke models. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/11312 Celani, Sergio Arturo; Properties of saturation in monotonic neighbourhood models and some applications; Springer; Studia Logica; 103; 4; 8-2015; 733-755 0039-3215 1572-8730 |
url |
http://hdl.handle.net/11336/11312 |
identifier_str_mv |
Celani, Sergio Arturo; Properties of saturation in monotonic neighbourhood models and some applications; Springer; Studia Logica; 103; 4; 8-2015; 733-755 0039-3215 1572-8730 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s11225-014-9590-z info:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-014-9590-z |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614344875180032 |
score |
13.070432 |