Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebras
- Autores
- Celani, Sergio Arturo
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we shall define the notion of quasi-semi-homomorphisms between Boolean algebras, as a generalization of the quasi-modal operators introduced in [3], of the notion of meet-homomorphism studied in [12] and [11], and the notion of precontact or proximity relation defined in [8]. We will prove that the class of Boolean algebras with quasi-semi-homomorphism is a category, denoted by BoQS. We shall prove that this category is equivalent to the category StQB of Stone spaces where the morphisms are binary relations, called quasi-Boolean relations, satisfying additional conditions. This duality extends the duality for meet-homomorphism given by P. R. Halmos in [12] and the duality for quasi-modal operators proved in [3].
Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
BOOLEAN ALGEBRAS
PROXIMITY RELATIONS
QUASI-SEMI-HOMOMORPHISMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/96806
Ver los metadatos del registro completo
id |
CONICETDig_5b69686d535669d1afaa1810fd250492 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/96806 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebrasCelani, Sergio ArturoBOOLEAN ALGEBRASPROXIMITY RELATIONSQUASI-SEMI-HOMOMORPHISMShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we shall define the notion of quasi-semi-homomorphisms between Boolean algebras, as a generalization of the quasi-modal operators introduced in [3], of the notion of meet-homomorphism studied in [12] and [11], and the notion of precontact or proximity relation defined in [8]. We will prove that the class of Boolean algebras with quasi-semi-homomorphism is a category, denoted by BoQS. We shall prove that this category is equivalent to the category StQB of Stone spaces where the morphisms are binary relations, called quasi-Boolean relations, satisfying additional conditions. This duality extends the duality for meet-homomorphism given by P. R. Halmos in [12] and the duality for quasi-modal operators proved in [3].Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaMiskolc University2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/96806Celani, Sergio Arturo; Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebras ; Miskolc University; Miskolc Mathematical Notes; 19; 1; 7-2018; 171-1891787-2405CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://mat76.mat.uni-miskolc.hu/mnotes/article/1803info:eu-repo/semantics/altIdentifier/doi/10.18514/MMN.2018.1803info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:20Zoai:ri.conicet.gov.ar:11336/96806instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:20.808CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebras |
title |
Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebras |
spellingShingle |
Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebras Celani, Sergio Arturo BOOLEAN ALGEBRAS PROXIMITY RELATIONS QUASI-SEMI-HOMOMORPHISMS |
title_short |
Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebras |
title_full |
Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebras |
title_fullStr |
Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebras |
title_full_unstemmed |
Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebras |
title_sort |
Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebras |
dc.creator.none.fl_str_mv |
Celani, Sergio Arturo |
author |
Celani, Sergio Arturo |
author_facet |
Celani, Sergio Arturo |
author_role |
author |
dc.subject.none.fl_str_mv |
BOOLEAN ALGEBRAS PROXIMITY RELATIONS QUASI-SEMI-HOMOMORPHISMS |
topic |
BOOLEAN ALGEBRAS PROXIMITY RELATIONS QUASI-SEMI-HOMOMORPHISMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we shall define the notion of quasi-semi-homomorphisms between Boolean algebras, as a generalization of the quasi-modal operators introduced in [3], of the notion of meet-homomorphism studied in [12] and [11], and the notion of precontact or proximity relation defined in [8]. We will prove that the class of Boolean algebras with quasi-semi-homomorphism is a category, denoted by BoQS. We shall prove that this category is equivalent to the category StQB of Stone spaces where the morphisms are binary relations, called quasi-Boolean relations, satisfying additional conditions. This duality extends the duality for meet-homomorphism given by P. R. Halmos in [12] and the duality for quasi-modal operators proved in [3]. Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In this paper we shall define the notion of quasi-semi-homomorphisms between Boolean algebras, as a generalization of the quasi-modal operators introduced in [3], of the notion of meet-homomorphism studied in [12] and [11], and the notion of precontact or proximity relation defined in [8]. We will prove that the class of Boolean algebras with quasi-semi-homomorphism is a category, denoted by BoQS. We shall prove that this category is equivalent to the category StQB of Stone spaces where the morphisms are binary relations, called quasi-Boolean relations, satisfying additional conditions. This duality extends the duality for meet-homomorphism given by P. R. Halmos in [12] and the duality for quasi-modal operators proved in [3]. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/96806 Celani, Sergio Arturo; Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebras ; Miskolc University; Miskolc Mathematical Notes; 19; 1; 7-2018; 171-189 1787-2405 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/96806 |
identifier_str_mv |
Celani, Sergio Arturo; Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebras ; Miskolc University; Miskolc Mathematical Notes; 19; 1; 7-2018; 171-189 1787-2405 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://mat76.mat.uni-miskolc.hu/mnotes/article/1803 info:eu-repo/semantics/altIdentifier/doi/10.18514/MMN.2018.1803 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Miskolc University |
publisher.none.fl_str_mv |
Miskolc University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269338703233024 |
score |
13.13397 |