Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebras

Autores
Celani, Sergio Arturo
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we shall define the notion of quasi-semi-homomorphisms between Boolean algebras, as a generalization of the quasi-modal operators introduced in [3], of the notion of meet-homomorphism studied in [12] and [11], and the notion of precontact or proximity relation defined in [8]. We will prove that the class of Boolean algebras with quasi-semi-homomorphism is a category, denoted by BoQS. We shall prove that this category is equivalent to the category StQB of Stone spaces where the morphisms are binary relations, called quasi-Boolean relations, satisfying additional conditions. This duality extends the duality for meet-homomorphism given by P. R. Halmos in [12] and the duality for quasi-modal operators proved in [3].
Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
BOOLEAN ALGEBRAS
PROXIMITY RELATIONS
QUASI-SEMI-HOMOMORPHISMS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/96806

id CONICETDig_5b69686d535669d1afaa1810fd250492
oai_identifier_str oai:ri.conicet.gov.ar:11336/96806
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebrasCelani, Sergio ArturoBOOLEAN ALGEBRASPROXIMITY RELATIONSQUASI-SEMI-HOMOMORPHISMShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we shall define the notion of quasi-semi-homomorphisms between Boolean algebras, as a generalization of the quasi-modal operators introduced in [3], of the notion of meet-homomorphism studied in [12] and [11], and the notion of precontact or proximity relation defined in [8]. We will prove that the class of Boolean algebras with quasi-semi-homomorphism is a category, denoted by BoQS. We shall prove that this category is equivalent to the category StQB of Stone spaces where the morphisms are binary relations, called quasi-Boolean relations, satisfying additional conditions. This duality extends the duality for meet-homomorphism given by P. R. Halmos in [12] and the duality for quasi-modal operators proved in [3].Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaMiskolc University2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/96806Celani, Sergio Arturo; Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebras ; Miskolc University; Miskolc Mathematical Notes; 19; 1; 7-2018; 171-1891787-2405CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://mat76.mat.uni-miskolc.hu/mnotes/article/1803info:eu-repo/semantics/altIdentifier/doi/10.18514/MMN.2018.1803info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:20Zoai:ri.conicet.gov.ar:11336/96806instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:20.808CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebras
title Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebras
spellingShingle Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebras
Celani, Sergio Arturo
BOOLEAN ALGEBRAS
PROXIMITY RELATIONS
QUASI-SEMI-HOMOMORPHISMS
title_short Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebras
title_full Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebras
title_fullStr Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebras
title_full_unstemmed Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebras
title_sort Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebras
dc.creator.none.fl_str_mv Celani, Sergio Arturo
author Celani, Sergio Arturo
author_facet Celani, Sergio Arturo
author_role author
dc.subject.none.fl_str_mv BOOLEAN ALGEBRAS
PROXIMITY RELATIONS
QUASI-SEMI-HOMOMORPHISMS
topic BOOLEAN ALGEBRAS
PROXIMITY RELATIONS
QUASI-SEMI-HOMOMORPHISMS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we shall define the notion of quasi-semi-homomorphisms between Boolean algebras, as a generalization of the quasi-modal operators introduced in [3], of the notion of meet-homomorphism studied in [12] and [11], and the notion of precontact or proximity relation defined in [8]. We will prove that the class of Boolean algebras with quasi-semi-homomorphism is a category, denoted by BoQS. We shall prove that this category is equivalent to the category StQB of Stone spaces where the morphisms are binary relations, called quasi-Boolean relations, satisfying additional conditions. This duality extends the duality for meet-homomorphism given by P. R. Halmos in [12] and the duality for quasi-modal operators proved in [3].
Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description In this paper we shall define the notion of quasi-semi-homomorphisms between Boolean algebras, as a generalization of the quasi-modal operators introduced in [3], of the notion of meet-homomorphism studied in [12] and [11], and the notion of precontact or proximity relation defined in [8]. We will prove that the class of Boolean algebras with quasi-semi-homomorphism is a category, denoted by BoQS. We shall prove that this category is equivalent to the category StQB of Stone spaces where the morphisms are binary relations, called quasi-Boolean relations, satisfying additional conditions. This duality extends the duality for meet-homomorphism given by P. R. Halmos in [12] and the duality for quasi-modal operators proved in [3].
publishDate 2018
dc.date.none.fl_str_mv 2018-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/96806
Celani, Sergio Arturo; Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebras ; Miskolc University; Miskolc Mathematical Notes; 19; 1; 7-2018; 171-189
1787-2405
CONICET Digital
CONICET
url http://hdl.handle.net/11336/96806
identifier_str_mv Celani, Sergio Arturo; Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebras ; Miskolc University; Miskolc Mathematical Notes; 19; 1; 7-2018; 171-189
1787-2405
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://mat76.mat.uni-miskolc.hu/mnotes/article/1803
info:eu-repo/semantics/altIdentifier/doi/10.18514/MMN.2018.1803
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Miskolc University
publisher.none.fl_str_mv Miskolc University
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269338703233024
score 13.13397