A quasilinear parabolic singular perturbation problem
- Autores
- Lederman, Claudia Beatriz; Oelz, Dietmar
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study a singular perturbation problem for a quasilinear uniformly parabolic operator of interest in combustion theory. We obtain uniform estimates, we pass to the limit and we show that, under suitable assumptions, the limit function $u$ is a solution to the free boundary problem ${\rm div } F(\nabla u)-\partial_{t}u=0$ in $\{ u>0 \}$, $u_\nu=\alpha(\nu, M)$ on $\partial\{ u>0\}$, in a pointwise sense and in a viscosity sense. Here $ \nu$ is the inward unit spatial normal to the free boundary $\partial\{ u>0 \}$ and $M$ is a positive constant. Some of the results obtained are new even when the operator under consideration is linear.
Fil: Lederman, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Oelz, Dietmar. Universidad de Viena; Austria - Materia
-
QUASILINEAR PARABOLIC OPERATOR
SINGULAR PERTURBATION PROBLEM
FREE BOUNDARY PROBLEM
COMBUSTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/276549
Ver los metadatos del registro completo
| id |
CONICETDig_5eb0691b4326209c4712fd7cf2ba36ea |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/276549 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A quasilinear parabolic singular perturbation problemLederman, Claudia BeatrizOelz, DietmarQUASILINEAR PARABOLIC OPERATORSINGULAR PERTURBATION PROBLEMFREE BOUNDARY PROBLEMCOMBUSTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study a singular perturbation problem for a quasilinear uniformly parabolic operator of interest in combustion theory. We obtain uniform estimates, we pass to the limit and we show that, under suitable assumptions, the limit function $u$ is a solution to the free boundary problem ${\rm div } F(\nabla u)-\partial_{t}u=0$ in $\{ u>0 \}$, $u_\nu=\alpha(\nu, M)$ on $\partial\{ u>0\}$, in a pointwise sense and in a viscosity sense. Here $ \nu$ is the inward unit spatial normal to the free boundary $\partial\{ u>0 \}$ and $M$ is a positive constant. Some of the results obtained are new even when the operator under consideration is linear.Fil: Lederman, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Oelz, Dietmar. Universidad de Viena; AustriaEuropean Mathematical Society2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/276549Lederman, Claudia Beatriz; Oelz, Dietmar; A quasilinear parabolic singular perturbation problem; European Mathematical Society; Interfaces And Free Boundaries; 10; 4; 12-2008; 447-4821463-9963CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ems.press/journals/ifb/articles/1893info:eu-repo/semantics/altIdentifier/doi/10.4171/ifb/197info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:53:40Zoai:ri.conicet.gov.ar:11336/276549instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:53:40.899CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A quasilinear parabolic singular perturbation problem |
| title |
A quasilinear parabolic singular perturbation problem |
| spellingShingle |
A quasilinear parabolic singular perturbation problem Lederman, Claudia Beatriz QUASILINEAR PARABOLIC OPERATOR SINGULAR PERTURBATION PROBLEM FREE BOUNDARY PROBLEM COMBUSTION |
| title_short |
A quasilinear parabolic singular perturbation problem |
| title_full |
A quasilinear parabolic singular perturbation problem |
| title_fullStr |
A quasilinear parabolic singular perturbation problem |
| title_full_unstemmed |
A quasilinear parabolic singular perturbation problem |
| title_sort |
A quasilinear parabolic singular perturbation problem |
| dc.creator.none.fl_str_mv |
Lederman, Claudia Beatriz Oelz, Dietmar |
| author |
Lederman, Claudia Beatriz |
| author_facet |
Lederman, Claudia Beatriz Oelz, Dietmar |
| author_role |
author |
| author2 |
Oelz, Dietmar |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
QUASILINEAR PARABOLIC OPERATOR SINGULAR PERTURBATION PROBLEM FREE BOUNDARY PROBLEM COMBUSTION |
| topic |
QUASILINEAR PARABOLIC OPERATOR SINGULAR PERTURBATION PROBLEM FREE BOUNDARY PROBLEM COMBUSTION |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We study a singular perturbation problem for a quasilinear uniformly parabolic operator of interest in combustion theory. We obtain uniform estimates, we pass to the limit and we show that, under suitable assumptions, the limit function $u$ is a solution to the free boundary problem ${\rm div } F(\nabla u)-\partial_{t}u=0$ in $\{ u>0 \}$, $u_\nu=\alpha(\nu, M)$ on $\partial\{ u>0\}$, in a pointwise sense and in a viscosity sense. Here $ \nu$ is the inward unit spatial normal to the free boundary $\partial\{ u>0 \}$ and $M$ is a positive constant. Some of the results obtained are new even when the operator under consideration is linear. Fil: Lederman, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Oelz, Dietmar. Universidad de Viena; Austria |
| description |
We study a singular perturbation problem for a quasilinear uniformly parabolic operator of interest in combustion theory. We obtain uniform estimates, we pass to the limit and we show that, under suitable assumptions, the limit function $u$ is a solution to the free boundary problem ${\rm div } F(\nabla u)-\partial_{t}u=0$ in $\{ u>0 \}$, $u_\nu=\alpha(\nu, M)$ on $\partial\{ u>0\}$, in a pointwise sense and in a viscosity sense. Here $ \nu$ is the inward unit spatial normal to the free boundary $\partial\{ u>0 \}$ and $M$ is a positive constant. Some of the results obtained are new even when the operator under consideration is linear. |
| publishDate |
2008 |
| dc.date.none.fl_str_mv |
2008-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/276549 Lederman, Claudia Beatriz; Oelz, Dietmar; A quasilinear parabolic singular perturbation problem; European Mathematical Society; Interfaces And Free Boundaries; 10; 4; 12-2008; 447-482 1463-9963 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/276549 |
| identifier_str_mv |
Lederman, Claudia Beatriz; Oelz, Dietmar; A quasilinear parabolic singular perturbation problem; European Mathematical Society; Interfaces And Free Boundaries; 10; 4; 12-2008; 447-482 1463-9963 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ems.press/journals/ifb/articles/1893 info:eu-repo/semantics/altIdentifier/doi/10.4171/ifb/197 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
European Mathematical Society |
| publisher.none.fl_str_mv |
European Mathematical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335433211445248 |
| score |
12.952241 |