A quasilinear parabolic singular perturbation problem

Autores
Lederman, Claudia Beatriz; Oelz, Dietmar
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study a singular perturbation problem for a quasilinear uniformly parabolic operator of interest in combustion theory. We obtain uniform estimates, we pass to the limit and we show that, under suitable assumptions, the limit function $u$ is a solution to the free boundary problem ${\rm div } F(\nabla u)-\partial_{t}u=0$ in $\{ u>0 \}$, $u_\nu=\alpha(\nu, M)$ on $\partial\{ u>0\}$, in a pointwise sense and in a viscosity sense. Here $ \nu$ is the inward unit spatial normal to the free boundary $\partial\{ u>0 \}$ and $M$ is a positive constant. Some of the results obtained are new even when the operator under consideration is linear.
Fil: Lederman, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Oelz, Dietmar. Universidad de Viena; Austria
Materia
QUASILINEAR PARABOLIC OPERATOR
SINGULAR PERTURBATION PROBLEM
FREE BOUNDARY PROBLEM
COMBUSTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/276549

id CONICETDig_5eb0691b4326209c4712fd7cf2ba36ea
oai_identifier_str oai:ri.conicet.gov.ar:11336/276549
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A quasilinear parabolic singular perturbation problemLederman, Claudia BeatrizOelz, DietmarQUASILINEAR PARABOLIC OPERATORSINGULAR PERTURBATION PROBLEMFREE BOUNDARY PROBLEMCOMBUSTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study a singular perturbation problem for a quasilinear uniformly parabolic operator of interest in combustion theory. We obtain uniform estimates, we pass to the limit and we show that, under suitable assumptions, the limit function $u$ is a solution to the free boundary problem ${\rm div } F(\nabla u)-\partial_{t}u=0$ in $\{ u>0 \}$, $u_\nu=\alpha(\nu, M)$ on $\partial\{ u>0\}$, in a pointwise sense and in a viscosity sense. Here $ \nu$ is the inward unit spatial normal to the free boundary $\partial\{ u>0 \}$ and $M$ is a positive constant. Some of the results obtained are new even when the operator under consideration is linear.Fil: Lederman, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Oelz, Dietmar. Universidad de Viena; AustriaEuropean Mathematical Society2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/276549Lederman, Claudia Beatriz; Oelz, Dietmar; A quasilinear parabolic singular perturbation problem; European Mathematical Society; Interfaces And Free Boundaries; 10; 4; 12-2008; 447-4821463-9963CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ems.press/journals/ifb/articles/1893info:eu-repo/semantics/altIdentifier/doi/10.4171/ifb/197info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:53:40Zoai:ri.conicet.gov.ar:11336/276549instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:53:40.899CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A quasilinear parabolic singular perturbation problem
title A quasilinear parabolic singular perturbation problem
spellingShingle A quasilinear parabolic singular perturbation problem
Lederman, Claudia Beatriz
QUASILINEAR PARABOLIC OPERATOR
SINGULAR PERTURBATION PROBLEM
FREE BOUNDARY PROBLEM
COMBUSTION
title_short A quasilinear parabolic singular perturbation problem
title_full A quasilinear parabolic singular perturbation problem
title_fullStr A quasilinear parabolic singular perturbation problem
title_full_unstemmed A quasilinear parabolic singular perturbation problem
title_sort A quasilinear parabolic singular perturbation problem
dc.creator.none.fl_str_mv Lederman, Claudia Beatriz
Oelz, Dietmar
author Lederman, Claudia Beatriz
author_facet Lederman, Claudia Beatriz
Oelz, Dietmar
author_role author
author2 Oelz, Dietmar
author2_role author
dc.subject.none.fl_str_mv QUASILINEAR PARABOLIC OPERATOR
SINGULAR PERTURBATION PROBLEM
FREE BOUNDARY PROBLEM
COMBUSTION
topic QUASILINEAR PARABOLIC OPERATOR
SINGULAR PERTURBATION PROBLEM
FREE BOUNDARY PROBLEM
COMBUSTION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study a singular perturbation problem for a quasilinear uniformly parabolic operator of interest in combustion theory. We obtain uniform estimates, we pass to the limit and we show that, under suitable assumptions, the limit function $u$ is a solution to the free boundary problem ${\rm div } F(\nabla u)-\partial_{t}u=0$ in $\{ u>0 \}$, $u_\nu=\alpha(\nu, M)$ on $\partial\{ u>0\}$, in a pointwise sense and in a viscosity sense. Here $ \nu$ is the inward unit spatial normal to the free boundary $\partial\{ u>0 \}$ and $M$ is a positive constant. Some of the results obtained are new even when the operator under consideration is linear.
Fil: Lederman, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Oelz, Dietmar. Universidad de Viena; Austria
description We study a singular perturbation problem for a quasilinear uniformly parabolic operator of interest in combustion theory. We obtain uniform estimates, we pass to the limit and we show that, under suitable assumptions, the limit function $u$ is a solution to the free boundary problem ${\rm div } F(\nabla u)-\partial_{t}u=0$ in $\{ u>0 \}$, $u_\nu=\alpha(\nu, M)$ on $\partial\{ u>0\}$, in a pointwise sense and in a viscosity sense. Here $ \nu$ is the inward unit spatial normal to the free boundary $\partial\{ u>0 \}$ and $M$ is a positive constant. Some of the results obtained are new even when the operator under consideration is linear.
publishDate 2008
dc.date.none.fl_str_mv 2008-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/276549
Lederman, Claudia Beatriz; Oelz, Dietmar; A quasilinear parabolic singular perturbation problem; European Mathematical Society; Interfaces And Free Boundaries; 10; 4; 12-2008; 447-482
1463-9963
CONICET Digital
CONICET
url http://hdl.handle.net/11336/276549
identifier_str_mv Lederman, Claudia Beatriz; Oelz, Dietmar; A quasilinear parabolic singular perturbation problem; European Mathematical Society; Interfaces And Free Boundaries; 10; 4; 12-2008; 447-482
1463-9963
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ems.press/journals/ifb/articles/1893
info:eu-repo/semantics/altIdentifier/doi/10.4171/ifb/197
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv European Mathematical Society
publisher.none.fl_str_mv European Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1852335433211445248
score 12.952241