A local monotonicity formula for an inhomogeneous singular perturbation problem and applications: Part II
- Autores
- Lederman, Claudia Beatriz; Wolanski, Noemi Irene
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we continue with our work in Lederman and Wolanski (Ann Math Pura Appl 187(2):197–220, 2008) where we developed a local monotonicity formula for solutions to an inhomogeneous singular perturbation problem of interest in combustion theory. There we proved local monotonicity formulae for solutions uε to the singular perturbation problem and for u = lim uε, assuming that both uε and u were defined in an arbitrary domain D in RN+1. In the present work we obtain global monotonicity formulae for limit functions u that are globally defined, while uε are not. We derive such global formulae from a local one that we prove here. In particular, we obtain a global monotonicity formula for blow up limits u0 of limit functions u that are not globally defined. As a consequence of this formula, we characterize blow up limits u0 in terms of the value of a density at the blow up point. We also present applications of the results in this paper to the study of the regularity of ∂{u > 0} (the flame front in combustion models). The fact that our results hold for the inhomogeneous singular perturbation problem allows a very wide applicability, for instance to problems with nonlocal diffusion and/or transport.
Fil: Lederman, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
SINGULAR PERTURBATION PROBLEM
MONOTONICITY FORMULA
INHOMOGENEOUS PROBLEM
COMBUSTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/245236
Ver los metadatos del registro completo
| id |
CONICETDig_222263092188f88093fe4ce32e502160 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/245236 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A local monotonicity formula for an inhomogeneous singular perturbation problem and applications: Part IILederman, Claudia BeatrizWolanski, Noemi IreneSINGULAR PERTURBATION PROBLEMMONOTONICITY FORMULAINHOMOGENEOUS PROBLEMCOMBUSTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we continue with our work in Lederman and Wolanski (Ann Math Pura Appl 187(2):197–220, 2008) where we developed a local monotonicity formula for solutions to an inhomogeneous singular perturbation problem of interest in combustion theory. There we proved local monotonicity formulae for solutions uε to the singular perturbation problem and for u = lim uε, assuming that both uε and u were defined in an arbitrary domain D in RN+1. In the present work we obtain global monotonicity formulae for limit functions u that are globally defined, while uε are not. We derive such global formulae from a local one that we prove here. In particular, we obtain a global monotonicity formula for blow up limits u0 of limit functions u that are not globally defined. As a consequence of this formula, we characterize blow up limits u0 in terms of the value of a density at the blow up point. We also present applications of the results in this paper to the study of the regularity of ∂{u > 0} (the flame front in combustion models). The fact that our results hold for the inhomogeneous singular perturbation problem allows a very wide applicability, for instance to problems with nonlocal diffusion and/or transport.Fil: Lederman, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer Heidelberg2010-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/245236Lederman, Claudia Beatriz; Wolanski, Noemi Irene; A local monotonicity formula for an inhomogeneous singular perturbation problem and applications: Part II; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 189; 1; 6-2010; 25-460373-3114CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10231-009-0099-4info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10231-009-0099-4info:eu-repo/semantics/altIdentifier/url/https://mate.dm.uba.ar/~wolanski/papers/monoII.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:03:59Zoai:ri.conicet.gov.ar:11336/245236instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:03:59.916CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A local monotonicity formula for an inhomogeneous singular perturbation problem and applications: Part II |
| title |
A local monotonicity formula for an inhomogeneous singular perturbation problem and applications: Part II |
| spellingShingle |
A local monotonicity formula for an inhomogeneous singular perturbation problem and applications: Part II Lederman, Claudia Beatriz SINGULAR PERTURBATION PROBLEM MONOTONICITY FORMULA INHOMOGENEOUS PROBLEM COMBUSTION |
| title_short |
A local monotonicity formula for an inhomogeneous singular perturbation problem and applications: Part II |
| title_full |
A local monotonicity formula for an inhomogeneous singular perturbation problem and applications: Part II |
| title_fullStr |
A local monotonicity formula for an inhomogeneous singular perturbation problem and applications: Part II |
| title_full_unstemmed |
A local monotonicity formula for an inhomogeneous singular perturbation problem and applications: Part II |
| title_sort |
A local monotonicity formula for an inhomogeneous singular perturbation problem and applications: Part II |
| dc.creator.none.fl_str_mv |
Lederman, Claudia Beatriz Wolanski, Noemi Irene |
| author |
Lederman, Claudia Beatriz |
| author_facet |
Lederman, Claudia Beatriz Wolanski, Noemi Irene |
| author_role |
author |
| author2 |
Wolanski, Noemi Irene |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
SINGULAR PERTURBATION PROBLEM MONOTONICITY FORMULA INHOMOGENEOUS PROBLEM COMBUSTION |
| topic |
SINGULAR PERTURBATION PROBLEM MONOTONICITY FORMULA INHOMOGENEOUS PROBLEM COMBUSTION |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this paper we continue with our work in Lederman and Wolanski (Ann Math Pura Appl 187(2):197–220, 2008) where we developed a local monotonicity formula for solutions to an inhomogeneous singular perturbation problem of interest in combustion theory. There we proved local monotonicity formulae for solutions uε to the singular perturbation problem and for u = lim uε, assuming that both uε and u were defined in an arbitrary domain D in RN+1. In the present work we obtain global monotonicity formulae for limit functions u that are globally defined, while uε are not. We derive such global formulae from a local one that we prove here. In particular, we obtain a global monotonicity formula for blow up limits u0 of limit functions u that are not globally defined. As a consequence of this formula, we characterize blow up limits u0 in terms of the value of a density at the blow up point. We also present applications of the results in this paper to the study of the regularity of ∂{u > 0} (the flame front in combustion models). The fact that our results hold for the inhomogeneous singular perturbation problem allows a very wide applicability, for instance to problems with nonlocal diffusion and/or transport. Fil: Lederman, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
| description |
In this paper we continue with our work in Lederman and Wolanski (Ann Math Pura Appl 187(2):197–220, 2008) where we developed a local monotonicity formula for solutions to an inhomogeneous singular perturbation problem of interest in combustion theory. There we proved local monotonicity formulae for solutions uε to the singular perturbation problem and for u = lim uε, assuming that both uε and u were defined in an arbitrary domain D in RN+1. In the present work we obtain global monotonicity formulae for limit functions u that are globally defined, while uε are not. We derive such global formulae from a local one that we prove here. In particular, we obtain a global monotonicity formula for blow up limits u0 of limit functions u that are not globally defined. As a consequence of this formula, we characterize blow up limits u0 in terms of the value of a density at the blow up point. We also present applications of the results in this paper to the study of the regularity of ∂{u > 0} (the flame front in combustion models). The fact that our results hold for the inhomogeneous singular perturbation problem allows a very wide applicability, for instance to problems with nonlocal diffusion and/or transport. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/245236 Lederman, Claudia Beatriz; Wolanski, Noemi Irene; A local monotonicity formula for an inhomogeneous singular perturbation problem and applications: Part II; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 189; 1; 6-2010; 25-46 0373-3114 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/245236 |
| identifier_str_mv |
Lederman, Claudia Beatriz; Wolanski, Noemi Irene; A local monotonicity formula for an inhomogeneous singular perturbation problem and applications: Part II; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 189; 1; 6-2010; 25-46 0373-3114 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10231-009-0099-4 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10231-009-0099-4 info:eu-repo/semantics/altIdentifier/url/https://mate.dm.uba.ar/~wolanski/papers/monoII.pdf |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer Heidelberg |
| publisher.none.fl_str_mv |
Springer Heidelberg |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781286195134464 |
| score |
12.982451 |