A two phase elliptic singular perturbation problem with a forcing term
- Autores
- Lederman, C.; Wolanski, N.
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the following two phase elliptic singular perturbation problem:Δ uε = βε (uε) + fε, in Ω ⊂ RN, where ε > 0, βε (s) = frac(1, ε) β (frac(s, ε)), with β a Lipschitz function satisfying β > 0 in (0, 1), β ≡ 0 outside (0, 1) and ∫ β (s) d s = M. The functions uε and fε are uniformly bounded. One of the motivations for the study of this problem is that it appears in the analysis of the propagation of flames in the high activation energy limit, when sources are present. We obtain uniform estimates, we pass to the limit (ε → 0) and we show that limit functions are solutions to the two phase free boundary problem:Δ u = f χ{u ≢ 0} in Ω {set minus} ∂ {u > 0},| ∇ u+ |2 - | ∇ u- |2 = 2 M on Ω ∩ ∂ {u > 0}, where f = lim fε, in a viscosity sense and in a pointwise sense at regular free boundary points. In addition, we show that the free boundary is smooth and thus limit functions are classical solutions to the free boundary problem, under suitable assumptions. Some of the results obtained are new even in the case fε ≡ 0. The results in this paper also apply to other combustion models. For instance, models with nonlocal diffusion and/or transport. Several of these applications are discussed here and we get, in some cases, the full regularity of the free boundary. © 2006 Elsevier SAS. All rights reserved.
Fil:Lederman, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Math. Pures Appl. 2006;86(6):552-589
- Materia
-
Combustion
Free boundary problem
Regularity
Two phase
Viscosity solutions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00217824_v86_n6_p552_Lederman
Ver los metadatos del registro completo
id |
BDUBAFCEN_63eb5b9fe3f796d6c5204c002f1cef39 |
---|---|
oai_identifier_str |
paperaa:paper_00217824_v86_n6_p552_Lederman |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
A two phase elliptic singular perturbation problem with a forcing termLederman, C.Wolanski, N.CombustionFree boundary problemRegularityTwo phaseViscosity solutionsWe study the following two phase elliptic singular perturbation problem:Δ uε = βε (uε) + fε, in Ω ⊂ RN, where ε > 0, βε (s) = frac(1, ε) β (frac(s, ε)), with β a Lipschitz function satisfying β > 0 in (0, 1), β ≡ 0 outside (0, 1) and ∫ β (s) d s = M. The functions uε and fε are uniformly bounded. One of the motivations for the study of this problem is that it appears in the analysis of the propagation of flames in the high activation energy limit, when sources are present. We obtain uniform estimates, we pass to the limit (ε → 0) and we show that limit functions are solutions to the two phase free boundary problem:Δ u = f χ{u ≢ 0} in Ω {set minus} ∂ {u > 0},| ∇ u+ |2 - | ∇ u- |2 = 2 M on Ω ∩ ∂ {u > 0}, where f = lim fε, in a viscosity sense and in a pointwise sense at regular free boundary points. In addition, we show that the free boundary is smooth and thus limit functions are classical solutions to the free boundary problem, under suitable assumptions. Some of the results obtained are new even in the case fε ≡ 0. The results in this paper also apply to other combustion models. For instance, models with nonlocal diffusion and/or transport. Several of these applications are discussed here and we get, in some cases, the full regularity of the free boundary. © 2006 Elsevier SAS. All rights reserved.Fil:Lederman, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00217824_v86_n6_p552_LedermanJ. Math. Pures Appl. 2006;86(6):552-589reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:49Zpaperaa:paper_00217824_v86_n6_p552_LedermanInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:50.721Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
A two phase elliptic singular perturbation problem with a forcing term |
title |
A two phase elliptic singular perturbation problem with a forcing term |
spellingShingle |
A two phase elliptic singular perturbation problem with a forcing term Lederman, C. Combustion Free boundary problem Regularity Two phase Viscosity solutions |
title_short |
A two phase elliptic singular perturbation problem with a forcing term |
title_full |
A two phase elliptic singular perturbation problem with a forcing term |
title_fullStr |
A two phase elliptic singular perturbation problem with a forcing term |
title_full_unstemmed |
A two phase elliptic singular perturbation problem with a forcing term |
title_sort |
A two phase elliptic singular perturbation problem with a forcing term |
dc.creator.none.fl_str_mv |
Lederman, C. Wolanski, N. |
author |
Lederman, C. |
author_facet |
Lederman, C. Wolanski, N. |
author_role |
author |
author2 |
Wolanski, N. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Combustion Free boundary problem Regularity Two phase Viscosity solutions |
topic |
Combustion Free boundary problem Regularity Two phase Viscosity solutions |
dc.description.none.fl_txt_mv |
We study the following two phase elliptic singular perturbation problem:Δ uε = βε (uε) + fε, in Ω ⊂ RN, where ε > 0, βε (s) = frac(1, ε) β (frac(s, ε)), with β a Lipschitz function satisfying β > 0 in (0, 1), β ≡ 0 outside (0, 1) and ∫ β (s) d s = M. The functions uε and fε are uniformly bounded. One of the motivations for the study of this problem is that it appears in the analysis of the propagation of flames in the high activation energy limit, when sources are present. We obtain uniform estimates, we pass to the limit (ε → 0) and we show that limit functions are solutions to the two phase free boundary problem:Δ u = f χ{u ≢ 0} in Ω {set minus} ∂ {u > 0},| ∇ u+ |2 - | ∇ u- |2 = 2 M on Ω ∩ ∂ {u > 0}, where f = lim fε, in a viscosity sense and in a pointwise sense at regular free boundary points. In addition, we show that the free boundary is smooth and thus limit functions are classical solutions to the free boundary problem, under suitable assumptions. Some of the results obtained are new even in the case fε ≡ 0. The results in this paper also apply to other combustion models. For instance, models with nonlocal diffusion and/or transport. Several of these applications are discussed here and we get, in some cases, the full regularity of the free boundary. © 2006 Elsevier SAS. All rights reserved. Fil:Lederman, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We study the following two phase elliptic singular perturbation problem:Δ uε = βε (uε) + fε, in Ω ⊂ RN, where ε > 0, βε (s) = frac(1, ε) β (frac(s, ε)), with β a Lipschitz function satisfying β > 0 in (0, 1), β ≡ 0 outside (0, 1) and ∫ β (s) d s = M. The functions uε and fε are uniformly bounded. One of the motivations for the study of this problem is that it appears in the analysis of the propagation of flames in the high activation energy limit, when sources are present. We obtain uniform estimates, we pass to the limit (ε → 0) and we show that limit functions are solutions to the two phase free boundary problem:Δ u = f χ{u ≢ 0} in Ω {set minus} ∂ {u > 0},| ∇ u+ |2 - | ∇ u- |2 = 2 M on Ω ∩ ∂ {u > 0}, where f = lim fε, in a viscosity sense and in a pointwise sense at regular free boundary points. In addition, we show that the free boundary is smooth and thus limit functions are classical solutions to the free boundary problem, under suitable assumptions. Some of the results obtained are new even in the case fε ≡ 0. The results in this paper also apply to other combustion models. For instance, models with nonlocal diffusion and/or transport. Several of these applications are discussed here and we get, in some cases, the full regularity of the free boundary. © 2006 Elsevier SAS. All rights reserved. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00217824_v86_n6_p552_Lederman |
url |
http://hdl.handle.net/20.500.12110/paper_00217824_v86_n6_p552_Lederman |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Math. Pures Appl. 2006;86(6):552-589 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618733209780224 |
score |
13.070432 |