Mathematical Modeling of Bivariate Distributions of Polymer Properties Using 2D Probability Generating Functions. Part II: Transformation of Population Mass Balances of Polymer Pro...
- Autores
- Brandolin, Adriana; Asteasuain, Mariano
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This is the second of two works presenting a new mathematical method for modeling bivariate distributions of polymer properties. It is based on the transformation of population balances using 2D probability generating functions (pgf) and a posteriori recovery of the distribution from the transform domain by numerical inversion. Part I of this work was devoted to the numerical inversion step. Here the transformation of the population balances to the pgf domain is analyzed. A 2D pgf transform table is developed, which allows a simple transformation of any typical polymer balance equation. Three copolymerization examples are used to show the application of the complete procedure of this modeling technique.
Fil: Brandolin, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); Argentina
Fil: Asteasuain, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); Argentina - Materia
-
Bivariate Distribution
Modeling Molecular Weight
Distribution/Molar Mass Distribution
Probability Generating Function - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/10032
Ver los metadatos del registro completo
id |
CONICETDig_5e452304df71f0b3f366429c5c1a6bec |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/10032 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Mathematical Modeling of Bivariate Distributions of Polymer Properties Using 2D Probability Generating Functions. Part II: Transformation of Population Mass Balances of Polymer ProcessesBrandolin, AdrianaAsteasuain, MarianoBivariate DistributionModeling Molecular WeightDistribution/Molar Mass DistributionProbability Generating Functionhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2This is the second of two works presenting a new mathematical method for modeling bivariate distributions of polymer properties. It is based on the transformation of population balances using 2D probability generating functions (pgf) and a posteriori recovery of the distribution from the transform domain by numerical inversion. Part I of this work was devoted to the numerical inversion step. Here the transformation of the population balances to the pgf domain is analyzed. A 2D pgf transform table is developed, which allows a simple transformation of any typical polymer balance equation. Three copolymerization examples are used to show the application of the complete procedure of this modeling technique.Fil: Brandolin, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); ArgentinaFil: Asteasuain, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); ArgentinaWiley VCH Verlag2013-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/10032Brandolin, Adriana; Asteasuain, Mariano; Mathematical Modeling of Bivariate Distributions of Polymer Properties Using 2D Probability Generating Functions. Part II: Transformation of Population Mass Balances of Polymer Processes; Wiley VCH Verlag; Macromolecular Theory And Simulations; 22; 5; 6-2013; 273-3081022-1344enginfo:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/mats.201200089/abstractinfo:eu-repo/semantics/altIdentifier/doi/10.1002/mats.201200089info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:15Zoai:ri.conicet.gov.ar:11336/10032instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:15.334CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Mathematical Modeling of Bivariate Distributions of Polymer Properties Using 2D Probability Generating Functions. Part II: Transformation of Population Mass Balances of Polymer Processes |
title |
Mathematical Modeling of Bivariate Distributions of Polymer Properties Using 2D Probability Generating Functions. Part II: Transformation of Population Mass Balances of Polymer Processes |
spellingShingle |
Mathematical Modeling of Bivariate Distributions of Polymer Properties Using 2D Probability Generating Functions. Part II: Transformation of Population Mass Balances of Polymer Processes Brandolin, Adriana Bivariate Distribution Modeling Molecular Weight Distribution/Molar Mass Distribution Probability Generating Function |
title_short |
Mathematical Modeling of Bivariate Distributions of Polymer Properties Using 2D Probability Generating Functions. Part II: Transformation of Population Mass Balances of Polymer Processes |
title_full |
Mathematical Modeling of Bivariate Distributions of Polymer Properties Using 2D Probability Generating Functions. Part II: Transformation of Population Mass Balances of Polymer Processes |
title_fullStr |
Mathematical Modeling of Bivariate Distributions of Polymer Properties Using 2D Probability Generating Functions. Part II: Transformation of Population Mass Balances of Polymer Processes |
title_full_unstemmed |
Mathematical Modeling of Bivariate Distributions of Polymer Properties Using 2D Probability Generating Functions. Part II: Transformation of Population Mass Balances of Polymer Processes |
title_sort |
Mathematical Modeling of Bivariate Distributions of Polymer Properties Using 2D Probability Generating Functions. Part II: Transformation of Population Mass Balances of Polymer Processes |
dc.creator.none.fl_str_mv |
Brandolin, Adriana Asteasuain, Mariano |
author |
Brandolin, Adriana |
author_facet |
Brandolin, Adriana Asteasuain, Mariano |
author_role |
author |
author2 |
Asteasuain, Mariano |
author2_role |
author |
dc.subject.none.fl_str_mv |
Bivariate Distribution Modeling Molecular Weight Distribution/Molar Mass Distribution Probability Generating Function |
topic |
Bivariate Distribution Modeling Molecular Weight Distribution/Molar Mass Distribution Probability Generating Function |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This is the second of two works presenting a new mathematical method for modeling bivariate distributions of polymer properties. It is based on the transformation of population balances using 2D probability generating functions (pgf) and a posteriori recovery of the distribution from the transform domain by numerical inversion. Part I of this work was devoted to the numerical inversion step. Here the transformation of the population balances to the pgf domain is analyzed. A 2D pgf transform table is developed, which allows a simple transformation of any typical polymer balance equation. Three copolymerization examples are used to show the application of the complete procedure of this modeling technique. Fil: Brandolin, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); Argentina Fil: Asteasuain, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); Argentina |
description |
This is the second of two works presenting a new mathematical method for modeling bivariate distributions of polymer properties. It is based on the transformation of population balances using 2D probability generating functions (pgf) and a posteriori recovery of the distribution from the transform domain by numerical inversion. Part I of this work was devoted to the numerical inversion step. Here the transformation of the population balances to the pgf domain is analyzed. A 2D pgf transform table is developed, which allows a simple transformation of any typical polymer balance equation. Three copolymerization examples are used to show the application of the complete procedure of this modeling technique. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/10032 Brandolin, Adriana; Asteasuain, Mariano; Mathematical Modeling of Bivariate Distributions of Polymer Properties Using 2D Probability Generating Functions. Part II: Transformation of Population Mass Balances of Polymer Processes; Wiley VCH Verlag; Macromolecular Theory And Simulations; 22; 5; 6-2013; 273-308 1022-1344 |
url |
http://hdl.handle.net/11336/10032 |
identifier_str_mv |
Brandolin, Adriana; Asteasuain, Mariano; Mathematical Modeling of Bivariate Distributions of Polymer Properties Using 2D Probability Generating Functions. Part II: Transformation of Population Mass Balances of Polymer Processes; Wiley VCH Verlag; Macromolecular Theory And Simulations; 22; 5; 6-2013; 273-308 1022-1344 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/mats.201200089/abstract info:eu-repo/semantics/altIdentifier/doi/10.1002/mats.201200089 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley VCH Verlag |
publisher.none.fl_str_mv |
Wiley VCH Verlag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613058719121408 |
score |
13.070432 |