Mathematical modeling of bivariate polymer property distributions using 2D probability generating functions, 1 - Numerical inversion methods
- Autores
- Asteasuain, Mariano; Brandolin, Adriana
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This is the first of two papers presenting a new mathematical method for modeling bivariate distributions of polymer properties. It is based on the transformation of the infinite mass balances describing the evolution of a two-dimensional distribution using 2D probability generating functions (pgf). A key step of this method is the inversion of the transforms. In this work, two numerical inversion methods of 2D pgfs are developed and carefully validated. The accuracy obtained with both methods was very satisfactory. The inversion formulas of both methods are simple and easy to implement. A simple copolymerization example is used to show the complete procedure from the derivation of the pgf balances to the recovery of the bivariate molecular weight distribution.
Fil: Asteasuain, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Brandolin, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina - Materia
-
Bivariate Distributions
Inversion Methods
Modeling
Polymerization
Probability Generating Functions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55941
Ver los metadatos del registro completo
id |
CONICETDig_56ca66cfa29c04c4dfe3f6120a94d027 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55941 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Mathematical modeling of bivariate polymer property distributions using 2D probability generating functions, 1 - Numerical inversion methodsAsteasuain, MarianoBrandolin, AdrianaBivariate DistributionsInversion MethodsModelingPolymerizationProbability Generating Functionshttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2This is the first of two papers presenting a new mathematical method for modeling bivariate distributions of polymer properties. It is based on the transformation of the infinite mass balances describing the evolution of a two-dimensional distribution using 2D probability generating functions (pgf). A key step of this method is the inversion of the transforms. In this work, two numerical inversion methods of 2D pgfs are developed and carefully validated. The accuracy obtained with both methods was very satisfactory. The inversion formulas of both methods are simple and easy to implement. A simple copolymerization example is used to show the complete procedure from the derivation of the pgf balances to the recovery of the bivariate molecular weight distribution.Fil: Asteasuain, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Brandolin, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaWiley VCH Verlag2010-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55941Asteasuain, Mariano; Brandolin, Adriana; Mathematical modeling of bivariate polymer property distributions using 2D probability generating functions, 1 - Numerical inversion methods; Wiley VCH Verlag; Macromolecular Theory And Simulations; 19; 6; 8-2010; 342-3591022-1344CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/mats.200900096info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/mats.200900096info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:49Zoai:ri.conicet.gov.ar:11336/55941instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:49.58CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Mathematical modeling of bivariate polymer property distributions using 2D probability generating functions, 1 - Numerical inversion methods |
title |
Mathematical modeling of bivariate polymer property distributions using 2D probability generating functions, 1 - Numerical inversion methods |
spellingShingle |
Mathematical modeling of bivariate polymer property distributions using 2D probability generating functions, 1 - Numerical inversion methods Asteasuain, Mariano Bivariate Distributions Inversion Methods Modeling Polymerization Probability Generating Functions |
title_short |
Mathematical modeling of bivariate polymer property distributions using 2D probability generating functions, 1 - Numerical inversion methods |
title_full |
Mathematical modeling of bivariate polymer property distributions using 2D probability generating functions, 1 - Numerical inversion methods |
title_fullStr |
Mathematical modeling of bivariate polymer property distributions using 2D probability generating functions, 1 - Numerical inversion methods |
title_full_unstemmed |
Mathematical modeling of bivariate polymer property distributions using 2D probability generating functions, 1 - Numerical inversion methods |
title_sort |
Mathematical modeling of bivariate polymer property distributions using 2D probability generating functions, 1 - Numerical inversion methods |
dc.creator.none.fl_str_mv |
Asteasuain, Mariano Brandolin, Adriana |
author |
Asteasuain, Mariano |
author_facet |
Asteasuain, Mariano Brandolin, Adriana |
author_role |
author |
author2 |
Brandolin, Adriana |
author2_role |
author |
dc.subject.none.fl_str_mv |
Bivariate Distributions Inversion Methods Modeling Polymerization Probability Generating Functions |
topic |
Bivariate Distributions Inversion Methods Modeling Polymerization Probability Generating Functions |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This is the first of two papers presenting a new mathematical method for modeling bivariate distributions of polymer properties. It is based on the transformation of the infinite mass balances describing the evolution of a two-dimensional distribution using 2D probability generating functions (pgf). A key step of this method is the inversion of the transforms. In this work, two numerical inversion methods of 2D pgfs are developed and carefully validated. The accuracy obtained with both methods was very satisfactory. The inversion formulas of both methods are simple and easy to implement. A simple copolymerization example is used to show the complete procedure from the derivation of the pgf balances to the recovery of the bivariate molecular weight distribution. Fil: Asteasuain, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Brandolin, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina |
description |
This is the first of two papers presenting a new mathematical method for modeling bivariate distributions of polymer properties. It is based on the transformation of the infinite mass balances describing the evolution of a two-dimensional distribution using 2D probability generating functions (pgf). A key step of this method is the inversion of the transforms. In this work, two numerical inversion methods of 2D pgfs are developed and carefully validated. The accuracy obtained with both methods was very satisfactory. The inversion formulas of both methods are simple and easy to implement. A simple copolymerization example is used to show the complete procedure from the derivation of the pgf balances to the recovery of the bivariate molecular weight distribution. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55941 Asteasuain, Mariano; Brandolin, Adriana; Mathematical modeling of bivariate polymer property distributions using 2D probability generating functions, 1 - Numerical inversion methods; Wiley VCH Verlag; Macromolecular Theory And Simulations; 19; 6; 8-2010; 342-359 1022-1344 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55941 |
identifier_str_mv |
Asteasuain, Mariano; Brandolin, Adriana; Mathematical modeling of bivariate polymer property distributions using 2D probability generating functions, 1 - Numerical inversion methods; Wiley VCH Verlag; Macromolecular Theory And Simulations; 19; 6; 8-2010; 342-359 1022-1344 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/mats.200900096 info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/mats.200900096 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley VCH Verlag |
publisher.none.fl_str_mv |
Wiley VCH Verlag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613260002721792 |
score |
13.070432 |