Improved numerical inversion methods for the recovery of bivariate distributions of polymer properties from 2D probability generating function domains
- Autores
- Brandolin, Adriana; Balbueno, Ayslane Assini; Asteasuain, Mariano
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The 2D probability generating function technique is a powerfulmethod for modeling bivariate distributions of polymer properties. It isbased on the transformation of bivariate population balance equationsusing 2D probability generating functions (pgf) and a posteriori recovery of the distribution from the transform domain by numerical inversion. A key step of this method is the inversion of the pgf transforms. Available numerical inversion methods yield excellent results for pgf transforms of distributions with independent dimensions of similar orders of magnitude.However, numerical problems are found for 2D distributions in which the independent dimensions have very different range of values, such as the molecular weight distribution-branching distribution in branched polymers. In this work, two new 2D pgf inversion methods are developed,which regard the pgf as a complex variable. The superior accuracy ofthese new methods allows constructing a 2D inversion technique suitablefor any type of bivariate distribution.This enhances the capabilities of the 2D pgf modeling technique for simulation and optimization of polymer processes. An application example of the technique in a polymeric system of industrial interest is presented.
Fil: Brandolin, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Balbueno, Ayslane Assini. Universidade Federal de Viçosa; Brasil
Fil: Asteasuain, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina - Materia
-
MODELING
POLYMERIZATION
BIVARIATE DISTRIBUTION
2D PROBABILITY GENERATING FUNCTION - Nivel de accesibilidad
- acceso embargado
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/26932
Ver los metadatos del registro completo
id |
CONICETDig_2dee4a196715080aa24ccd7e67ff93e0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/26932 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Improved numerical inversion methods for the recovery of bivariate distributions of polymer properties from 2D probability generating function domainsBrandolin, AdrianaBalbueno, Ayslane AssiniAsteasuain, MarianoMODELINGPOLYMERIZATIONBIVARIATE DISTRIBUTION2D PROBABILITY GENERATING FUNCTIONhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The 2D probability generating function technique is a powerfulmethod for modeling bivariate distributions of polymer properties. It isbased on the transformation of bivariate population balance equationsusing 2D probability generating functions (pgf) and a posteriori recovery of the distribution from the transform domain by numerical inversion. A key step of this method is the inversion of the pgf transforms. Available numerical inversion methods yield excellent results for pgf transforms of distributions with independent dimensions of similar orders of magnitude.However, numerical problems are found for 2D distributions in which the independent dimensions have very different range of values, such as the molecular weight distribution-branching distribution in branched polymers. In this work, two new 2D pgf inversion methods are developed,which regard the pgf as a complex variable. The superior accuracy ofthese new methods allows constructing a 2D inversion technique suitablefor any type of bivariate distribution.This enhances the capabilities of the 2D pgf modeling technique for simulation and optimization of polymer processes. An application example of the technique in a polymeric system of industrial interest is presented.Fil: Brandolin, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Balbueno, Ayslane Assini. Universidade Federal de Viçosa; BrasilFil: Asteasuain, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaElsevier2016-07-30info:eu-repo/date/embargoEnd/2018-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/26932Brandolin, Adriana; Balbueno, Ayslane Assini; Asteasuain, Mariano; Improved numerical inversion methods for the recovery of bivariate distributions of polymer properties from 2D probability generating function domains; Elsevier; Computers and Chemical Engineering; 94; 30-7-2016; 272-2860098-1354CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2016.07.017info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S009813541630237Xinfo:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:22:04Zoai:ri.conicet.gov.ar:11336/26932instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:22:05.098CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Improved numerical inversion methods for the recovery of bivariate distributions of polymer properties from 2D probability generating function domains |
title |
Improved numerical inversion methods for the recovery of bivariate distributions of polymer properties from 2D probability generating function domains |
spellingShingle |
Improved numerical inversion methods for the recovery of bivariate distributions of polymer properties from 2D probability generating function domains Brandolin, Adriana MODELING POLYMERIZATION BIVARIATE DISTRIBUTION 2D PROBABILITY GENERATING FUNCTION |
title_short |
Improved numerical inversion methods for the recovery of bivariate distributions of polymer properties from 2D probability generating function domains |
title_full |
Improved numerical inversion methods for the recovery of bivariate distributions of polymer properties from 2D probability generating function domains |
title_fullStr |
Improved numerical inversion methods for the recovery of bivariate distributions of polymer properties from 2D probability generating function domains |
title_full_unstemmed |
Improved numerical inversion methods for the recovery of bivariate distributions of polymer properties from 2D probability generating function domains |
title_sort |
Improved numerical inversion methods for the recovery of bivariate distributions of polymer properties from 2D probability generating function domains |
dc.creator.none.fl_str_mv |
Brandolin, Adriana Balbueno, Ayslane Assini Asteasuain, Mariano |
author |
Brandolin, Adriana |
author_facet |
Brandolin, Adriana Balbueno, Ayslane Assini Asteasuain, Mariano |
author_role |
author |
author2 |
Balbueno, Ayslane Assini Asteasuain, Mariano |
author2_role |
author author |
dc.subject.none.fl_str_mv |
MODELING POLYMERIZATION BIVARIATE DISTRIBUTION 2D PROBABILITY GENERATING FUNCTION |
topic |
MODELING POLYMERIZATION BIVARIATE DISTRIBUTION 2D PROBABILITY GENERATING FUNCTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The 2D probability generating function technique is a powerfulmethod for modeling bivariate distributions of polymer properties. It isbased on the transformation of bivariate population balance equationsusing 2D probability generating functions (pgf) and a posteriori recovery of the distribution from the transform domain by numerical inversion. A key step of this method is the inversion of the pgf transforms. Available numerical inversion methods yield excellent results for pgf transforms of distributions with independent dimensions of similar orders of magnitude.However, numerical problems are found for 2D distributions in which the independent dimensions have very different range of values, such as the molecular weight distribution-branching distribution in branched polymers. In this work, two new 2D pgf inversion methods are developed,which regard the pgf as a complex variable. The superior accuracy ofthese new methods allows constructing a 2D inversion technique suitablefor any type of bivariate distribution.This enhances the capabilities of the 2D pgf modeling technique for simulation and optimization of polymer processes. An application example of the technique in a polymeric system of industrial interest is presented. Fil: Brandolin, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Balbueno, Ayslane Assini. Universidade Federal de Viçosa; Brasil Fil: Asteasuain, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina |
description |
The 2D probability generating function technique is a powerfulmethod for modeling bivariate distributions of polymer properties. It isbased on the transformation of bivariate population balance equationsusing 2D probability generating functions (pgf) and a posteriori recovery of the distribution from the transform domain by numerical inversion. A key step of this method is the inversion of the pgf transforms. Available numerical inversion methods yield excellent results for pgf transforms of distributions with independent dimensions of similar orders of magnitude.However, numerical problems are found for 2D distributions in which the independent dimensions have very different range of values, such as the molecular weight distribution-branching distribution in branched polymers. In this work, two new 2D pgf inversion methods are developed,which regard the pgf as a complex variable. The superior accuracy ofthese new methods allows constructing a 2D inversion technique suitablefor any type of bivariate distribution.This enhances the capabilities of the 2D pgf modeling technique for simulation and optimization of polymer processes. An application example of the technique in a polymeric system of industrial interest is presented. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-07-30 info:eu-repo/date/embargoEnd/2018-08-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/26932 Brandolin, Adriana; Balbueno, Ayslane Assini; Asteasuain, Mariano; Improved numerical inversion methods for the recovery of bivariate distributions of polymer properties from 2D probability generating function domains; Elsevier; Computers and Chemical Engineering; 94; 30-7-2016; 272-286 0098-1354 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/26932 |
identifier_str_mv |
Brandolin, Adriana; Balbueno, Ayslane Assini; Asteasuain, Mariano; Improved numerical inversion methods for the recovery of bivariate distributions of polymer properties from 2D probability generating function domains; Elsevier; Computers and Chemical Engineering; 94; 30-7-2016; 272-286 0098-1354 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2016.07.017 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S009813541630237X |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
embargoedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981215088410624 |
score |
12.48226 |