Modeling of the bivariate molecular weight distribution-copolymer composition distribution in RAFT copolymerization using probability generating functions
- Autores
- Fortunatti, Cecilia; Sarmoria, Claudia; Brandolin, Adriana; Asteasuain, Mariano
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, we develop a mathematical model of a RAFT copolymerization process able to predict average molecular properties as well as the full bivariate molecular weight distribution – copolymer composition distribution (MWD-CCD) of the copolymer. This model takes into account the three main kinetic theories proposed in the literature. The bivariate MWD-CCD is obtained by means of the 2D probability generating function (pgf) technique. This modeling technique can be used without any simplifying assumptions or a priori knowledge of the distribution shape. The results highlight the advantages of simulation as a powerful tool to get insight in the relationship between operating conditions and molecular structure.
Fil: Fortunatti, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Sarmoria, Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Brandolin, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Asteasuain, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina - Materia
-
Copolymerization
Modeling
Molecular Weight Distribution (Mwd)
Probability Generating Function (Pgf)
Reversible Addition Fragmentation Chain Transfer (Raft) - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/64829
Ver los metadatos del registro completo
id |
CONICETDig_547896412c611216b90e69b86b4cf93f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/64829 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Modeling of the bivariate molecular weight distribution-copolymer composition distribution in RAFT copolymerization using probability generating functionsFortunatti, CeciliaSarmoria, ClaudiaBrandolin, AdrianaAsteasuain, MarianoCopolymerizationModelingMolecular Weight Distribution (Mwd)Probability Generating Function (Pgf)Reversible Addition Fragmentation Chain Transfer (Raft)https://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2In this work, we develop a mathematical model of a RAFT copolymerization process able to predict average molecular properties as well as the full bivariate molecular weight distribution – copolymer composition distribution (MWD-CCD) of the copolymer. This model takes into account the three main kinetic theories proposed in the literature. The bivariate MWD-CCD is obtained by means of the 2D probability generating function (pgf) technique. This modeling technique can be used without any simplifying assumptions or a priori knowledge of the distribution shape. The results highlight the advantages of simulation as a powerful tool to get insight in the relationship between operating conditions and molecular structure.Fil: Fortunatti, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Sarmoria, Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Brandolin, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Asteasuain, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaElsevier Science2017-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/64829Fortunatti, Cecilia; Sarmoria, Claudia; Brandolin, Adriana; Asteasuain, Mariano; Modeling of the bivariate molecular weight distribution-copolymer composition distribution in RAFT copolymerization using probability generating functions; Elsevier Science; Computational Materials Science; 136; 8-2017; 280-2960927-0256CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.commatsci.2017.04.013info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0927025617301969info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:50Zoai:ri.conicet.gov.ar:11336/64829instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:51.125CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Modeling of the bivariate molecular weight distribution-copolymer composition distribution in RAFT copolymerization using probability generating functions |
title |
Modeling of the bivariate molecular weight distribution-copolymer composition distribution in RAFT copolymerization using probability generating functions |
spellingShingle |
Modeling of the bivariate molecular weight distribution-copolymer composition distribution in RAFT copolymerization using probability generating functions Fortunatti, Cecilia Copolymerization Modeling Molecular Weight Distribution (Mwd) Probability Generating Function (Pgf) Reversible Addition Fragmentation Chain Transfer (Raft) |
title_short |
Modeling of the bivariate molecular weight distribution-copolymer composition distribution in RAFT copolymerization using probability generating functions |
title_full |
Modeling of the bivariate molecular weight distribution-copolymer composition distribution in RAFT copolymerization using probability generating functions |
title_fullStr |
Modeling of the bivariate molecular weight distribution-copolymer composition distribution in RAFT copolymerization using probability generating functions |
title_full_unstemmed |
Modeling of the bivariate molecular weight distribution-copolymer composition distribution in RAFT copolymerization using probability generating functions |
title_sort |
Modeling of the bivariate molecular weight distribution-copolymer composition distribution in RAFT copolymerization using probability generating functions |
dc.creator.none.fl_str_mv |
Fortunatti, Cecilia Sarmoria, Claudia Brandolin, Adriana Asteasuain, Mariano |
author |
Fortunatti, Cecilia |
author_facet |
Fortunatti, Cecilia Sarmoria, Claudia Brandolin, Adriana Asteasuain, Mariano |
author_role |
author |
author2 |
Sarmoria, Claudia Brandolin, Adriana Asteasuain, Mariano |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Copolymerization Modeling Molecular Weight Distribution (Mwd) Probability Generating Function (Pgf) Reversible Addition Fragmentation Chain Transfer (Raft) |
topic |
Copolymerization Modeling Molecular Weight Distribution (Mwd) Probability Generating Function (Pgf) Reversible Addition Fragmentation Chain Transfer (Raft) |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work, we develop a mathematical model of a RAFT copolymerization process able to predict average molecular properties as well as the full bivariate molecular weight distribution – copolymer composition distribution (MWD-CCD) of the copolymer. This model takes into account the three main kinetic theories proposed in the literature. The bivariate MWD-CCD is obtained by means of the 2D probability generating function (pgf) technique. This modeling technique can be used without any simplifying assumptions or a priori knowledge of the distribution shape. The results highlight the advantages of simulation as a powerful tool to get insight in the relationship between operating conditions and molecular structure. Fil: Fortunatti, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Sarmoria, Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Brandolin, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Asteasuain, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina |
description |
In this work, we develop a mathematical model of a RAFT copolymerization process able to predict average molecular properties as well as the full bivariate molecular weight distribution – copolymer composition distribution (MWD-CCD) of the copolymer. This model takes into account the three main kinetic theories proposed in the literature. The bivariate MWD-CCD is obtained by means of the 2D probability generating function (pgf) technique. This modeling technique can be used without any simplifying assumptions or a priori knowledge of the distribution shape. The results highlight the advantages of simulation as a powerful tool to get insight in the relationship between operating conditions and molecular structure. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/64829 Fortunatti, Cecilia; Sarmoria, Claudia; Brandolin, Adriana; Asteasuain, Mariano; Modeling of the bivariate molecular weight distribution-copolymer composition distribution in RAFT copolymerization using probability generating functions; Elsevier Science; Computational Materials Science; 136; 8-2017; 280-296 0927-0256 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/64829 |
identifier_str_mv |
Fortunatti, Cecilia; Sarmoria, Claudia; Brandolin, Adriana; Asteasuain, Mariano; Modeling of the bivariate molecular weight distribution-copolymer composition distribution in RAFT copolymerization using probability generating functions; Elsevier Science; Computational Materials Science; 136; 8-2017; 280-296 0927-0256 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.commatsci.2017.04.013 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0927025617301969 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613043263111168 |
score |
13.070432 |