Prediction of the full molecular weight distribution in RAFT polymerization using probability generating functions
- Autores
- Fortunatti, Cecilia; Sarmoria, Claudia; Brandolin, Adriana; Asteasuain, Mariano
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, a model for the RAFT polymerization following the slow fragmentation approach was developed in order to obtain the full molecular weight distribution (MWD) using probability generating functions (pgf). A combination of univariate and bivariate pgf is applied to deal with the univariate chain length distributions of macroradical, dormant and dead polymer chains, and the bivariate distribution of the two arms intermediate adduct. This allows rigorous modeling of the polymerization system without simplifying assumptions. For comparison purposes, the population balances were solved by direct integration of the resulting equations. Our results show that the pgf technique allows obtaining an accurate solution efficiently in terms of computational time. What is more, the model provides a detailed characterization of the polymer that could be of great help for grasp the process fundamentals.
Fil: Fortunatti, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); Argentina
Fil: Sarmoria, Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); Argentina
Fil: Brandolin, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); Argentina
Fil: Asteasuain, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); Argentina - Materia
-
Modeling
Molecular Weight Distribution
Probability Generating Function
Raft Polymerization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/13515
Ver los metadatos del registro completo
id |
CONICETDig_ff2a4ec04143f125e249e68e12c540e7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/13515 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Prediction of the full molecular weight distribution in RAFT polymerization using probability generating functionsFortunatti, CeciliaSarmoria, ClaudiaBrandolin, AdrianaAsteasuain, MarianoModelingMolecular Weight DistributionProbability Generating FunctionRaft Polymerizationhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2In this work, a model for the RAFT polymerization following the slow fragmentation approach was developed in order to obtain the full molecular weight distribution (MWD) using probability generating functions (pgf). A combination of univariate and bivariate pgf is applied to deal with the univariate chain length distributions of macroradical, dormant and dead polymer chains, and the bivariate distribution of the two arms intermediate adduct. This allows rigorous modeling of the polymerization system without simplifying assumptions. For comparison purposes, the population balances were solved by direct integration of the resulting equations. Our results show that the pgf technique allows obtaining an accurate solution efficiently in terms of computational time. What is more, the model provides a detailed characterization of the polymer that could be of great help for grasp the process fundamentals.Fil: Fortunatti, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); ArgentinaFil: Sarmoria, Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); ArgentinaFil: Brandolin, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); ArgentinaFil: Asteasuain, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); ArgentinaElsevier2014-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13515Fortunatti, Cecilia; Sarmoria, Claudia; Brandolin, Adriana; Asteasuain, Mariano; Prediction of the full molecular weight distribution in RAFT polymerization using probability generating functions; Elsevier; Computers and Chemical Engineering; 66; 7-2014; 214-2200098-1354enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135414000490info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1016/j.compchemeng.2014.02.017info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:08:51Zoai:ri.conicet.gov.ar:11336/13515instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:08:51.965CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Prediction of the full molecular weight distribution in RAFT polymerization using probability generating functions |
title |
Prediction of the full molecular weight distribution in RAFT polymerization using probability generating functions |
spellingShingle |
Prediction of the full molecular weight distribution in RAFT polymerization using probability generating functions Fortunatti, Cecilia Modeling Molecular Weight Distribution Probability Generating Function Raft Polymerization |
title_short |
Prediction of the full molecular weight distribution in RAFT polymerization using probability generating functions |
title_full |
Prediction of the full molecular weight distribution in RAFT polymerization using probability generating functions |
title_fullStr |
Prediction of the full molecular weight distribution in RAFT polymerization using probability generating functions |
title_full_unstemmed |
Prediction of the full molecular weight distribution in RAFT polymerization using probability generating functions |
title_sort |
Prediction of the full molecular weight distribution in RAFT polymerization using probability generating functions |
dc.creator.none.fl_str_mv |
Fortunatti, Cecilia Sarmoria, Claudia Brandolin, Adriana Asteasuain, Mariano |
author |
Fortunatti, Cecilia |
author_facet |
Fortunatti, Cecilia Sarmoria, Claudia Brandolin, Adriana Asteasuain, Mariano |
author_role |
author |
author2 |
Sarmoria, Claudia Brandolin, Adriana Asteasuain, Mariano |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Modeling Molecular Weight Distribution Probability Generating Function Raft Polymerization |
topic |
Modeling Molecular Weight Distribution Probability Generating Function Raft Polymerization |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work, a model for the RAFT polymerization following the slow fragmentation approach was developed in order to obtain the full molecular weight distribution (MWD) using probability generating functions (pgf). A combination of univariate and bivariate pgf is applied to deal with the univariate chain length distributions of macroradical, dormant and dead polymer chains, and the bivariate distribution of the two arms intermediate adduct. This allows rigorous modeling of the polymerization system without simplifying assumptions. For comparison purposes, the population balances were solved by direct integration of the resulting equations. Our results show that the pgf technique allows obtaining an accurate solution efficiently in terms of computational time. What is more, the model provides a detailed characterization of the polymer that could be of great help for grasp the process fundamentals. Fil: Fortunatti, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); Argentina Fil: Sarmoria, Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); Argentina Fil: Brandolin, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); Argentina Fil: Asteasuain, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); Argentina |
description |
In this work, a model for the RAFT polymerization following the slow fragmentation approach was developed in order to obtain the full molecular weight distribution (MWD) using probability generating functions (pgf). A combination of univariate and bivariate pgf is applied to deal with the univariate chain length distributions of macroradical, dormant and dead polymer chains, and the bivariate distribution of the two arms intermediate adduct. This allows rigorous modeling of the polymerization system without simplifying assumptions. For comparison purposes, the population balances were solved by direct integration of the resulting equations. Our results show that the pgf technique allows obtaining an accurate solution efficiently in terms of computational time. What is more, the model provides a detailed characterization of the polymer that could be of great help for grasp the process fundamentals. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/13515 Fortunatti, Cecilia; Sarmoria, Claudia; Brandolin, Adriana; Asteasuain, Mariano; Prediction of the full molecular weight distribution in RAFT polymerization using probability generating functions; Elsevier; Computers and Chemical Engineering; 66; 7-2014; 214-220 0098-1354 |
url |
http://hdl.handle.net/11336/13515 |
identifier_str_mv |
Fortunatti, Cecilia; Sarmoria, Claudia; Brandolin, Adriana; Asteasuain, Mariano; Prediction of the full molecular weight distribution in RAFT polymerization using probability generating functions; Elsevier; Computers and Chemical Engineering; 66; 7-2014; 214-220 0098-1354 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135414000490 info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1016/j.compchemeng.2014.02.017 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980427405459456 |
score |
12.993085 |