Lie Group Generalized-α Time Integration of Constrained Flexible Multibody Systems
- Autores
- Brüls, Olivier; Cardona, Alberto; Arnold, Martín Alejandro
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper studies a Lie group extension of the generalized-α time integration method for the simulation of flexible multibody systems. The equations of motion are formulated as an index-3 differential-algebraic equation (DAE) on a Lie group, with the advantage that rotation variables can be taken into account without the need of introducing any parameterization. The proposed integrator is designed to solve this equation directly on the Lie group without index reduction. The convergence of the method for DAEs is studied in detail and global second-order accuracy is proven for all solution components, i.e. for nodal translations, rotations and Lagrange multipliers. The convergence properties are confirmed by three benchmarks of rigid and flexible systems with large rotation amplitudes. The Lie group method is compared with a more classical updated Lagrangian method which is also formulated in a Lie group setting. The remarkable simplicity of the new algorithm opens interesting perspectives for real-time applications, model-based control and optimization of multibody systems.
Fil: Brüls, Olivier. University of Liège; Bélgica
Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Arnold, Martín Alejandro. Martin Luther University Halle-Wittenberg; Alemania - Materia
-
Flexible Multibody System;
Time Integration;
Generalized-Α Method;
Dae; - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18837
Ver los metadatos del registro completo
id |
CONICETDig_5d1790f952fcb623da7512256bee96d5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18837 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Lie Group Generalized-α Time Integration of Constrained Flexible Multibody SystemsBrüls, OlivierCardona, AlbertoArnold, Martín AlejandroFlexible Multibody System;Time Integration;Generalized-Α Method;Dae;https://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2This paper studies a Lie group extension of the generalized-α time integration method for the simulation of flexible multibody systems. The equations of motion are formulated as an index-3 differential-algebraic equation (DAE) on a Lie group, with the advantage that rotation variables can be taken into account without the need of introducing any parameterization. The proposed integrator is designed to solve this equation directly on the Lie group without index reduction. The convergence of the method for DAEs is studied in detail and global second-order accuracy is proven for all solution components, i.e. for nodal translations, rotations and Lagrange multipliers. The convergence properties are confirmed by three benchmarks of rigid and flexible systems with large rotation amplitudes. The Lie group method is compared with a more classical updated Lagrangian method which is also formulated in a Lie group setting. The remarkable simplicity of the new algorithm opens interesting perspectives for real-time applications, model-based control and optimization of multibody systems.Fil: Brüls, Olivier. University of Liège; BélgicaFil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Arnold, Martín Alejandro. Martin Luther University Halle-Wittenberg; AlemaniaElsevier2012-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18837Brüls, Olivier; Cardona, Alberto; Arnold, Martín Alejandro; Lie Group Generalized-α Time Integration of Constrained Flexible Multibody Systems; Elsevier; Mechanism And Machine Theory; 48; 2-2012; 121-1370094-114XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0094114X11001510info:eu-repo/semantics/altIdentifier/doi/10.1016/j.mechmachtheory.2011.07.017info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:02:01Zoai:ri.conicet.gov.ar:11336/18837instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:02:02.134CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Lie Group Generalized-α Time Integration of Constrained Flexible Multibody Systems |
title |
Lie Group Generalized-α Time Integration of Constrained Flexible Multibody Systems |
spellingShingle |
Lie Group Generalized-α Time Integration of Constrained Flexible Multibody Systems Brüls, Olivier Flexible Multibody System; Time Integration; Generalized-Α Method; Dae; |
title_short |
Lie Group Generalized-α Time Integration of Constrained Flexible Multibody Systems |
title_full |
Lie Group Generalized-α Time Integration of Constrained Flexible Multibody Systems |
title_fullStr |
Lie Group Generalized-α Time Integration of Constrained Flexible Multibody Systems |
title_full_unstemmed |
Lie Group Generalized-α Time Integration of Constrained Flexible Multibody Systems |
title_sort |
Lie Group Generalized-α Time Integration of Constrained Flexible Multibody Systems |
dc.creator.none.fl_str_mv |
Brüls, Olivier Cardona, Alberto Arnold, Martín Alejandro |
author |
Brüls, Olivier |
author_facet |
Brüls, Olivier Cardona, Alberto Arnold, Martín Alejandro |
author_role |
author |
author2 |
Cardona, Alberto Arnold, Martín Alejandro |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Flexible Multibody System; Time Integration; Generalized-Α Method; Dae; |
topic |
Flexible Multibody System; Time Integration; Generalized-Α Method; Dae; |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper studies a Lie group extension of the generalized-α time integration method for the simulation of flexible multibody systems. The equations of motion are formulated as an index-3 differential-algebraic equation (DAE) on a Lie group, with the advantage that rotation variables can be taken into account without the need of introducing any parameterization. The proposed integrator is designed to solve this equation directly on the Lie group without index reduction. The convergence of the method for DAEs is studied in detail and global second-order accuracy is proven for all solution components, i.e. for nodal translations, rotations and Lagrange multipliers. The convergence properties are confirmed by three benchmarks of rigid and flexible systems with large rotation amplitudes. The Lie group method is compared with a more classical updated Lagrangian method which is also formulated in a Lie group setting. The remarkable simplicity of the new algorithm opens interesting perspectives for real-time applications, model-based control and optimization of multibody systems. Fil: Brüls, Olivier. University of Liège; Bélgica Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Arnold, Martín Alejandro. Martin Luther University Halle-Wittenberg; Alemania |
description |
This paper studies a Lie group extension of the generalized-α time integration method for the simulation of flexible multibody systems. The equations of motion are formulated as an index-3 differential-algebraic equation (DAE) on a Lie group, with the advantage that rotation variables can be taken into account without the need of introducing any parameterization. The proposed integrator is designed to solve this equation directly on the Lie group without index reduction. The convergence of the method for DAEs is studied in detail and global second-order accuracy is proven for all solution components, i.e. for nodal translations, rotations and Lagrange multipliers. The convergence properties are confirmed by three benchmarks of rigid and flexible systems with large rotation amplitudes. The Lie group method is compared with a more classical updated Lagrangian method which is also formulated in a Lie group setting. The remarkable simplicity of the new algorithm opens interesting perspectives for real-time applications, model-based control and optimization of multibody systems. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18837 Brüls, Olivier; Cardona, Alberto; Arnold, Martín Alejandro; Lie Group Generalized-α Time Integration of Constrained Flexible Multibody Systems; Elsevier; Mechanism And Machine Theory; 48; 2-2012; 121-137 0094-114X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18837 |
identifier_str_mv |
Brüls, Olivier; Cardona, Alberto; Arnold, Martín Alejandro; Lie Group Generalized-α Time Integration of Constrained Flexible Multibody Systems; Elsevier; Mechanism And Machine Theory; 48; 2-2012; 121-137 0094-114X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0094114X11001510 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.mechmachtheory.2011.07.017 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846781218731851776 |
score |
12.982451 |