Validation of flexible multibody dynamics beam formulations using benchmark problems
- Autores
- Bauchau, Olivier A.; Betsch, Peter; Cardona, Alberto; Gerstmayr, Johannes; Jonker, Ben; Masarati, Pierangelo; Sonneville, Valentin
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- As the need to model flexibility arose in multibody dynamics, the floating frame of reference formulation was developed, but this approach can yield inaccurate results when elastic displacements becomes large. While the use of three-dimensional finite element formulations overcomes this problem, the associated computational cost is overwhelming. Consequently, beam models, which are one-dimensional approximations of three-dimensional elasticity, have become the workhorse of many flexible multibody dynamics codes. Numerous beam formulations have been proposed, such as the geometrically exact beam formulation or the absolute nodal coordinate formulation, to name just two. New solution strategies have been investigated as well, including the intrinsic beam formulation or the DAE approach. This paper provides a systematic comparison of these various approaches, which will be assessed by comparing their predictions for four benchmark problems. The first problem is the Princeton beam experiment, a study of the static large displacement and rotation behavior of a simple cantilevered beam under a gravity tip load. The second problem, the four-bar mechanism, focuses on a flexible mechanism involving beams and revolute joints. The third problem investigates the behavior of a beam bent in its plane of greatest flexural rigidity, resulting in lateral buckling when a critical value of the transverse load is reached. The last problem investigates the dynamic stability of a rotating shaft. The predictions of eight independent codes are compared for these four benchmark problems and are found to be in close agreement with each other and with experimental measurements, when available.
Fil: Bauchau, Olivier A.. University of Maryland; Estados Unidos
Fil: Betsch, Peter. Karlsruher Institut fur Technologie; Alemania
Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Gerstmayr, Johannes. Universidad de Innsbruck; Austria
Fil: Jonker, Ben. University of Twente; Países Bajos
Fil: Masarati, Pierangelo. Politecnico di Milano; Italia
Fil: Sonneville, Valentin. Université de Liège; Bélgica - Materia
-
Beam Models
Benchmark Problems
Multibody Dynamics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/38256
Ver los metadatos del registro completo
id |
CONICETDig_b2d5944baf6131af4dcb0b0dc782fd01 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/38256 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Validation of flexible multibody dynamics beam formulations using benchmark problemsBauchau, Olivier A.Betsch, PeterCardona, AlbertoGerstmayr, JohannesJonker, BenMasarati, PierangeloSonneville, ValentinBeam ModelsBenchmark ProblemsMultibody Dynamicshttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2As the need to model flexibility arose in multibody dynamics, the floating frame of reference formulation was developed, but this approach can yield inaccurate results when elastic displacements becomes large. While the use of three-dimensional finite element formulations overcomes this problem, the associated computational cost is overwhelming. Consequently, beam models, which are one-dimensional approximations of three-dimensional elasticity, have become the workhorse of many flexible multibody dynamics codes. Numerous beam formulations have been proposed, such as the geometrically exact beam formulation or the absolute nodal coordinate formulation, to name just two. New solution strategies have been investigated as well, including the intrinsic beam formulation or the DAE approach. This paper provides a systematic comparison of these various approaches, which will be assessed by comparing their predictions for four benchmark problems. The first problem is the Princeton beam experiment, a study of the static large displacement and rotation behavior of a simple cantilevered beam under a gravity tip load. The second problem, the four-bar mechanism, focuses on a flexible mechanism involving beams and revolute joints. The third problem investigates the behavior of a beam bent in its plane of greatest flexural rigidity, resulting in lateral buckling when a critical value of the transverse load is reached. The last problem investigates the dynamic stability of a rotating shaft. The predictions of eight independent codes are compared for these four benchmark problems and are found to be in close agreement with each other and with experimental measurements, when available.Fil: Bauchau, Olivier A.. University of Maryland; Estados UnidosFil: Betsch, Peter. Karlsruher Institut fur Technologie; AlemaniaFil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Gerstmayr, Johannes. Universidad de Innsbruck; AustriaFil: Jonker, Ben. University of Twente; Países BajosFil: Masarati, Pierangelo. Politecnico di Milano; ItaliaFil: Sonneville, Valentin. Université de Liège; BélgicaSpringer2016-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38256Bauchau, Olivier A.; Betsch, Peter; Cardona, Alberto; Gerstmayr, Johannes; Jonker, Ben; et al.; Validation of flexible multibody dynamics beam formulations using benchmark problems; Springer; Multibody System Dynamics; 37; 1; 5-2016; 29-481384-56401573-272XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11044-016-9514-yinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11044-016-9514-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:09Zoai:ri.conicet.gov.ar:11336/38256instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:10.071CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Validation of flexible multibody dynamics beam formulations using benchmark problems |
title |
Validation of flexible multibody dynamics beam formulations using benchmark problems |
spellingShingle |
Validation of flexible multibody dynamics beam formulations using benchmark problems Bauchau, Olivier A. Beam Models Benchmark Problems Multibody Dynamics |
title_short |
Validation of flexible multibody dynamics beam formulations using benchmark problems |
title_full |
Validation of flexible multibody dynamics beam formulations using benchmark problems |
title_fullStr |
Validation of flexible multibody dynamics beam formulations using benchmark problems |
title_full_unstemmed |
Validation of flexible multibody dynamics beam formulations using benchmark problems |
title_sort |
Validation of flexible multibody dynamics beam formulations using benchmark problems |
dc.creator.none.fl_str_mv |
Bauchau, Olivier A. Betsch, Peter Cardona, Alberto Gerstmayr, Johannes Jonker, Ben Masarati, Pierangelo Sonneville, Valentin |
author |
Bauchau, Olivier A. |
author_facet |
Bauchau, Olivier A. Betsch, Peter Cardona, Alberto Gerstmayr, Johannes Jonker, Ben Masarati, Pierangelo Sonneville, Valentin |
author_role |
author |
author2 |
Betsch, Peter Cardona, Alberto Gerstmayr, Johannes Jonker, Ben Masarati, Pierangelo Sonneville, Valentin |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Beam Models Benchmark Problems Multibody Dynamics |
topic |
Beam Models Benchmark Problems Multibody Dynamics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
As the need to model flexibility arose in multibody dynamics, the floating frame of reference formulation was developed, but this approach can yield inaccurate results when elastic displacements becomes large. While the use of three-dimensional finite element formulations overcomes this problem, the associated computational cost is overwhelming. Consequently, beam models, which are one-dimensional approximations of three-dimensional elasticity, have become the workhorse of many flexible multibody dynamics codes. Numerous beam formulations have been proposed, such as the geometrically exact beam formulation or the absolute nodal coordinate formulation, to name just two. New solution strategies have been investigated as well, including the intrinsic beam formulation or the DAE approach. This paper provides a systematic comparison of these various approaches, which will be assessed by comparing their predictions for four benchmark problems. The first problem is the Princeton beam experiment, a study of the static large displacement and rotation behavior of a simple cantilevered beam under a gravity tip load. The second problem, the four-bar mechanism, focuses on a flexible mechanism involving beams and revolute joints. The third problem investigates the behavior of a beam bent in its plane of greatest flexural rigidity, resulting in lateral buckling when a critical value of the transverse load is reached. The last problem investigates the dynamic stability of a rotating shaft. The predictions of eight independent codes are compared for these four benchmark problems and are found to be in close agreement with each other and with experimental measurements, when available. Fil: Bauchau, Olivier A.. University of Maryland; Estados Unidos Fil: Betsch, Peter. Karlsruher Institut fur Technologie; Alemania Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina Fil: Gerstmayr, Johannes. Universidad de Innsbruck; Austria Fil: Jonker, Ben. University of Twente; Países Bajos Fil: Masarati, Pierangelo. Politecnico di Milano; Italia Fil: Sonneville, Valentin. Université de Liège; Bélgica |
description |
As the need to model flexibility arose in multibody dynamics, the floating frame of reference formulation was developed, but this approach can yield inaccurate results when elastic displacements becomes large. While the use of three-dimensional finite element formulations overcomes this problem, the associated computational cost is overwhelming. Consequently, beam models, which are one-dimensional approximations of three-dimensional elasticity, have become the workhorse of many flexible multibody dynamics codes. Numerous beam formulations have been proposed, such as the geometrically exact beam formulation or the absolute nodal coordinate formulation, to name just two. New solution strategies have been investigated as well, including the intrinsic beam formulation or the DAE approach. This paper provides a systematic comparison of these various approaches, which will be assessed by comparing their predictions for four benchmark problems. The first problem is the Princeton beam experiment, a study of the static large displacement and rotation behavior of a simple cantilevered beam under a gravity tip load. The second problem, the four-bar mechanism, focuses on a flexible mechanism involving beams and revolute joints. The third problem investigates the behavior of a beam bent in its plane of greatest flexural rigidity, resulting in lateral buckling when a critical value of the transverse load is reached. The last problem investigates the dynamic stability of a rotating shaft. The predictions of eight independent codes are compared for these four benchmark problems and are found to be in close agreement with each other and with experimental measurements, when available. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/38256 Bauchau, Olivier A.; Betsch, Peter; Cardona, Alberto; Gerstmayr, Johannes; Jonker, Ben; et al.; Validation of flexible multibody dynamics beam formulations using benchmark problems; Springer; Multibody System Dynamics; 37; 1; 5-2016; 29-48 1384-5640 1573-272X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/38256 |
identifier_str_mv |
Bauchau, Olivier A.; Betsch, Peter; Cardona, Alberto; Gerstmayr, Johannes; Jonker, Ben; et al.; Validation of flexible multibody dynamics beam formulations using benchmark problems; Springer; Multibody System Dynamics; 37; 1; 5-2016; 29-48 1384-5640 1573-272X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11044-016-9514-y info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11044-016-9514-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613131917066240 |
score |
13.070432 |