Validation of flexible multibody dynamics beam formulations using benchmark problems

Autores
Bauchau, Olivier A.; Betsch, Peter; Cardona, Alberto; Gerstmayr, Johannes; Jonker, Ben; Masarati, Pierangelo; Sonneville, Valentin
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
As the need to model flexibility arose in multibody dynamics, the floating frame of reference formulation was developed, but this approach can yield inaccurate results when elastic displacements becomes large. While the use of three-dimensional finite element formulations overcomes this problem, the associated computational cost is overwhelming. Consequently, beam models, which are one-dimensional approximations of three-dimensional elasticity, have become the workhorse of many flexible multibody dynamics codes. Numerous beam formulations have been proposed, such as the geometrically exact beam formulation or the absolute nodal coordinate formulation, to name just two. New solution strategies have been investigated as well, including the intrinsic beam formulation or the DAE approach. This paper provides a systematic comparison of these various approaches, which will be assessed by comparing their predictions for four benchmark problems. The first problem is the Princeton beam experiment, a study of the static large displacement and rotation behavior of a simple cantilevered beam under a gravity tip load. The second problem, the four-bar mechanism, focuses on a flexible mechanism involving beams and revolute joints. The third problem investigates the behavior of a beam bent in its plane of greatest flexural rigidity, resulting in lateral buckling when a critical value of the transverse load is reached. The last problem investigates the dynamic stability of a rotating shaft. The predictions of eight independent codes are compared for these four benchmark problems and are found to be in close agreement with each other and with experimental measurements, when available.
Fil: Bauchau, Olivier A.. University of Maryland; Estados Unidos
Fil: Betsch, Peter. Karlsruher Institut fur Technologie; Alemania
Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Gerstmayr, Johannes. Universidad de Innsbruck; Austria
Fil: Jonker, Ben. University of Twente; Países Bajos
Fil: Masarati, Pierangelo. Politecnico di Milano; Italia
Fil: Sonneville, Valentin. Université de Liège; Bélgica
Materia
Beam Models
Benchmark Problems
Multibody Dynamics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/38256

id CONICETDig_b2d5944baf6131af4dcb0b0dc782fd01
oai_identifier_str oai:ri.conicet.gov.ar:11336/38256
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Validation of flexible multibody dynamics beam formulations using benchmark problemsBauchau, Olivier A.Betsch, PeterCardona, AlbertoGerstmayr, JohannesJonker, BenMasarati, PierangeloSonneville, ValentinBeam ModelsBenchmark ProblemsMultibody Dynamicshttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2As the need to model flexibility arose in multibody dynamics, the floating frame of reference formulation was developed, but this approach can yield inaccurate results when elastic displacements becomes large. While the use of three-dimensional finite element formulations overcomes this problem, the associated computational cost is overwhelming. Consequently, beam models, which are one-dimensional approximations of three-dimensional elasticity, have become the workhorse of many flexible multibody dynamics codes. Numerous beam formulations have been proposed, such as the geometrically exact beam formulation or the absolute nodal coordinate formulation, to name just two. New solution strategies have been investigated as well, including the intrinsic beam formulation or the DAE approach. This paper provides a systematic comparison of these various approaches, which will be assessed by comparing their predictions for four benchmark problems. The first problem is the Princeton beam experiment, a study of the static large displacement and rotation behavior of a simple cantilevered beam under a gravity tip load. The second problem, the four-bar mechanism, focuses on a flexible mechanism involving beams and revolute joints. The third problem investigates the behavior of a beam bent in its plane of greatest flexural rigidity, resulting in lateral buckling when a critical value of the transverse load is reached. The last problem investigates the dynamic stability of a rotating shaft. The predictions of eight independent codes are compared for these four benchmark problems and are found to be in close agreement with each other and with experimental measurements, when available.Fil: Bauchau, Olivier A.. University of Maryland; Estados UnidosFil: Betsch, Peter. Karlsruher Institut fur Technologie; AlemaniaFil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Gerstmayr, Johannes. Universidad de Innsbruck; AustriaFil: Jonker, Ben. University of Twente; Países BajosFil: Masarati, Pierangelo. Politecnico di Milano; ItaliaFil: Sonneville, Valentin. Université de Liège; BélgicaSpringer2016-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38256Bauchau, Olivier A.; Betsch, Peter; Cardona, Alberto; Gerstmayr, Johannes; Jonker, Ben; et al.; Validation of flexible multibody dynamics beam formulations using benchmark problems; Springer; Multibody System Dynamics; 37; 1; 5-2016; 29-481384-56401573-272XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11044-016-9514-yinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11044-016-9514-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:09Zoai:ri.conicet.gov.ar:11336/38256instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:10.071CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Validation of flexible multibody dynamics beam formulations using benchmark problems
title Validation of flexible multibody dynamics beam formulations using benchmark problems
spellingShingle Validation of flexible multibody dynamics beam formulations using benchmark problems
Bauchau, Olivier A.
Beam Models
Benchmark Problems
Multibody Dynamics
title_short Validation of flexible multibody dynamics beam formulations using benchmark problems
title_full Validation of flexible multibody dynamics beam formulations using benchmark problems
title_fullStr Validation of flexible multibody dynamics beam formulations using benchmark problems
title_full_unstemmed Validation of flexible multibody dynamics beam formulations using benchmark problems
title_sort Validation of flexible multibody dynamics beam formulations using benchmark problems
dc.creator.none.fl_str_mv Bauchau, Olivier A.
Betsch, Peter
Cardona, Alberto
Gerstmayr, Johannes
Jonker, Ben
Masarati, Pierangelo
Sonneville, Valentin
author Bauchau, Olivier A.
author_facet Bauchau, Olivier A.
Betsch, Peter
Cardona, Alberto
Gerstmayr, Johannes
Jonker, Ben
Masarati, Pierangelo
Sonneville, Valentin
author_role author
author2 Betsch, Peter
Cardona, Alberto
Gerstmayr, Johannes
Jonker, Ben
Masarati, Pierangelo
Sonneville, Valentin
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Beam Models
Benchmark Problems
Multibody Dynamics
topic Beam Models
Benchmark Problems
Multibody Dynamics
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv As the need to model flexibility arose in multibody dynamics, the floating frame of reference formulation was developed, but this approach can yield inaccurate results when elastic displacements becomes large. While the use of three-dimensional finite element formulations overcomes this problem, the associated computational cost is overwhelming. Consequently, beam models, which are one-dimensional approximations of three-dimensional elasticity, have become the workhorse of many flexible multibody dynamics codes. Numerous beam formulations have been proposed, such as the geometrically exact beam formulation or the absolute nodal coordinate formulation, to name just two. New solution strategies have been investigated as well, including the intrinsic beam formulation or the DAE approach. This paper provides a systematic comparison of these various approaches, which will be assessed by comparing their predictions for four benchmark problems. The first problem is the Princeton beam experiment, a study of the static large displacement and rotation behavior of a simple cantilevered beam under a gravity tip load. The second problem, the four-bar mechanism, focuses on a flexible mechanism involving beams and revolute joints. The third problem investigates the behavior of a beam bent in its plane of greatest flexural rigidity, resulting in lateral buckling when a critical value of the transverse load is reached. The last problem investigates the dynamic stability of a rotating shaft. The predictions of eight independent codes are compared for these four benchmark problems and are found to be in close agreement with each other and with experimental measurements, when available.
Fil: Bauchau, Olivier A.. University of Maryland; Estados Unidos
Fil: Betsch, Peter. Karlsruher Institut fur Technologie; Alemania
Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Gerstmayr, Johannes. Universidad de Innsbruck; Austria
Fil: Jonker, Ben. University of Twente; Países Bajos
Fil: Masarati, Pierangelo. Politecnico di Milano; Italia
Fil: Sonneville, Valentin. Université de Liège; Bélgica
description As the need to model flexibility arose in multibody dynamics, the floating frame of reference formulation was developed, but this approach can yield inaccurate results when elastic displacements becomes large. While the use of three-dimensional finite element formulations overcomes this problem, the associated computational cost is overwhelming. Consequently, beam models, which are one-dimensional approximations of three-dimensional elasticity, have become the workhorse of many flexible multibody dynamics codes. Numerous beam formulations have been proposed, such as the geometrically exact beam formulation or the absolute nodal coordinate formulation, to name just two. New solution strategies have been investigated as well, including the intrinsic beam formulation or the DAE approach. This paper provides a systematic comparison of these various approaches, which will be assessed by comparing their predictions for four benchmark problems. The first problem is the Princeton beam experiment, a study of the static large displacement and rotation behavior of a simple cantilevered beam under a gravity tip load. The second problem, the four-bar mechanism, focuses on a flexible mechanism involving beams and revolute joints. The third problem investigates the behavior of a beam bent in its plane of greatest flexural rigidity, resulting in lateral buckling when a critical value of the transverse load is reached. The last problem investigates the dynamic stability of a rotating shaft. The predictions of eight independent codes are compared for these four benchmark problems and are found to be in close agreement with each other and with experimental measurements, when available.
publishDate 2016
dc.date.none.fl_str_mv 2016-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/38256
Bauchau, Olivier A.; Betsch, Peter; Cardona, Alberto; Gerstmayr, Johannes; Jonker, Ben; et al.; Validation of flexible multibody dynamics beam formulations using benchmark problems; Springer; Multibody System Dynamics; 37; 1; 5-2016; 29-48
1384-5640
1573-272X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/38256
identifier_str_mv Bauchau, Olivier A.; Betsch, Peter; Cardona, Alberto; Gerstmayr, Johannes; Jonker, Ben; et al.; Validation of flexible multibody dynamics beam formulations using benchmark problems; Springer; Multibody System Dynamics; 37; 1; 5-2016; 29-48
1384-5640
1573-272X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s11044-016-9514-y
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11044-016-9514-y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613131917066240
score 13.070432