Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme

Autores
Brüls, Olivier; Acary, Vincent; Cardona, Alberto
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper presents a formalism for the transient simulation of nonsmooth dynamic mechanical systems composed of rigid and flexible bodies, kinematic joints and frictionless contact conditions. The proposed algorithm guarantees the exact satisfaction of the bilateral and unilateral constraints both at position and velocity levels. Thus, it significantly differs from penalty techniques since no penetration is allowed. The numerical scheme is obtained in two main steps. Firstly, a splitting method is used to isolate the contributions of impacts, which shall be integrated with only first-order accuracy, from smooth contributions which can be integrated using a higher order scheme. Secondly, following the idea of Gear, Gupta and Leimkuhler, the equation of motion is reformulated so that the bilateral and unilateral constraints appear both at position and velocity levels. After time discretization, the equation of motion involves two complementarity conditions and it can be solved at each time step using a monolithic semi-smooth Newton method. The numerical behavior of the proposed method is studied and compared to other approaches for a number of numerical examples. It is shown that the formulation offers a unified and valid approach for the description of contact conditions between rigid bodies as well as between flexible bodies.
Fil: Brüls, Olivier. Université de Liège; Bélgica
Fil: Acary, Vincent. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hidricas. Departamento de Informatica; Argentina
Materia
FLEXIBLE MULTIBODY SYSTEM
GENERALIZED-Α METHOD
INDEX REDUCTION
NONSMOOTH CONTACT DYNAMICS
TIME INTEGRATION
TIME-STEPPING SCHEMES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/78629

id CONICETDig_0b672a73cb70fab0b737612a26cf588e
oai_identifier_str oai:ri.conicet.gov.ar:11336/78629
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α schemeBrüls, OlivierAcary, VincentCardona, AlbertoFLEXIBLE MULTIBODY SYSTEMGENERALIZED-Α METHODINDEX REDUCTIONNONSMOOTH CONTACT DYNAMICSTIME INTEGRATIONTIME-STEPPING SCHEMEShttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2This paper presents a formalism for the transient simulation of nonsmooth dynamic mechanical systems composed of rigid and flexible bodies, kinematic joints and frictionless contact conditions. The proposed algorithm guarantees the exact satisfaction of the bilateral and unilateral constraints both at position and velocity levels. Thus, it significantly differs from penalty techniques since no penetration is allowed. The numerical scheme is obtained in two main steps. Firstly, a splitting method is used to isolate the contributions of impacts, which shall be integrated with only first-order accuracy, from smooth contributions which can be integrated using a higher order scheme. Secondly, following the idea of Gear, Gupta and Leimkuhler, the equation of motion is reformulated so that the bilateral and unilateral constraints appear both at position and velocity levels. After time discretization, the equation of motion involves two complementarity conditions and it can be solved at each time step using a monolithic semi-smooth Newton method. The numerical behavior of the proposed method is studied and compared to other approaches for a number of numerical examples. It is shown that the formulation offers a unified and valid approach for the description of contact conditions between rigid bodies as well as between flexible bodies.Fil: Brüls, Olivier. Université de Liège; BélgicaFil: Acary, Vincent. Institut National de Recherche en Informatique et en Automatique; FranciaFil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hidricas. Departamento de Informatica; ArgentinaElsevier Science SA2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/78629Brüls, Olivier; Acary, Vincent; Cardona, Alberto; Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme; Elsevier Science SA; Computer Methods in Applied Mechanics and Engineering; 281; 1; 11-2014; 131-1610045-7825CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2014.07.025info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0045782514002576info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:33Zoai:ri.conicet.gov.ar:11336/78629instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:33.862CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme
title Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme
spellingShingle Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme
Brüls, Olivier
FLEXIBLE MULTIBODY SYSTEM
GENERALIZED-Α METHOD
INDEX REDUCTION
NONSMOOTH CONTACT DYNAMICS
TIME INTEGRATION
TIME-STEPPING SCHEMES
title_short Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme
title_full Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme
title_fullStr Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme
title_full_unstemmed Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme
title_sort Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme
dc.creator.none.fl_str_mv Brüls, Olivier
Acary, Vincent
Cardona, Alberto
author Brüls, Olivier
author_facet Brüls, Olivier
Acary, Vincent
Cardona, Alberto
author_role author
author2 Acary, Vincent
Cardona, Alberto
author2_role author
author
dc.subject.none.fl_str_mv FLEXIBLE MULTIBODY SYSTEM
GENERALIZED-Α METHOD
INDEX REDUCTION
NONSMOOTH CONTACT DYNAMICS
TIME INTEGRATION
TIME-STEPPING SCHEMES
topic FLEXIBLE MULTIBODY SYSTEM
GENERALIZED-Α METHOD
INDEX REDUCTION
NONSMOOTH CONTACT DYNAMICS
TIME INTEGRATION
TIME-STEPPING SCHEMES
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This paper presents a formalism for the transient simulation of nonsmooth dynamic mechanical systems composed of rigid and flexible bodies, kinematic joints and frictionless contact conditions. The proposed algorithm guarantees the exact satisfaction of the bilateral and unilateral constraints both at position and velocity levels. Thus, it significantly differs from penalty techniques since no penetration is allowed. The numerical scheme is obtained in two main steps. Firstly, a splitting method is used to isolate the contributions of impacts, which shall be integrated with only first-order accuracy, from smooth contributions which can be integrated using a higher order scheme. Secondly, following the idea of Gear, Gupta and Leimkuhler, the equation of motion is reformulated so that the bilateral and unilateral constraints appear both at position and velocity levels. After time discretization, the equation of motion involves two complementarity conditions and it can be solved at each time step using a monolithic semi-smooth Newton method. The numerical behavior of the proposed method is studied and compared to other approaches for a number of numerical examples. It is shown that the formulation offers a unified and valid approach for the description of contact conditions between rigid bodies as well as between flexible bodies.
Fil: Brüls, Olivier. Université de Liège; Bélgica
Fil: Acary, Vincent. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hidricas. Departamento de Informatica; Argentina
description This paper presents a formalism for the transient simulation of nonsmooth dynamic mechanical systems composed of rigid and flexible bodies, kinematic joints and frictionless contact conditions. The proposed algorithm guarantees the exact satisfaction of the bilateral and unilateral constraints both at position and velocity levels. Thus, it significantly differs from penalty techniques since no penetration is allowed. The numerical scheme is obtained in two main steps. Firstly, a splitting method is used to isolate the contributions of impacts, which shall be integrated with only first-order accuracy, from smooth contributions which can be integrated using a higher order scheme. Secondly, following the idea of Gear, Gupta and Leimkuhler, the equation of motion is reformulated so that the bilateral and unilateral constraints appear both at position and velocity levels. After time discretization, the equation of motion involves two complementarity conditions and it can be solved at each time step using a monolithic semi-smooth Newton method. The numerical behavior of the proposed method is studied and compared to other approaches for a number of numerical examples. It is shown that the formulation offers a unified and valid approach for the description of contact conditions between rigid bodies as well as between flexible bodies.
publishDate 2014
dc.date.none.fl_str_mv 2014-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/78629
Brüls, Olivier; Acary, Vincent; Cardona, Alberto; Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme; Elsevier Science SA; Computer Methods in Applied Mechanics and Engineering; 281; 1; 11-2014; 131-161
0045-7825
CONICET Digital
CONICET
url http://hdl.handle.net/11336/78629
identifier_str_mv Brüls, Olivier; Acary, Vincent; Cardona, Alberto; Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme; Elsevier Science SA; Computer Methods in Applied Mechanics and Engineering; 281; 1; 11-2014; 131-161
0045-7825
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2014.07.025
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0045782514002576
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science SA
publisher.none.fl_str_mv Elsevier Science SA
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613371000782848
score 13.070432