Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme
- Autores
- Brüls, Olivier; Acary, Vincent; Cardona, Alberto
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper presents a formalism for the transient simulation of nonsmooth dynamic mechanical systems composed of rigid and flexible bodies, kinematic joints and frictionless contact conditions. The proposed algorithm guarantees the exact satisfaction of the bilateral and unilateral constraints both at position and velocity levels. Thus, it significantly differs from penalty techniques since no penetration is allowed. The numerical scheme is obtained in two main steps. Firstly, a splitting method is used to isolate the contributions of impacts, which shall be integrated with only first-order accuracy, from smooth contributions which can be integrated using a higher order scheme. Secondly, following the idea of Gear, Gupta and Leimkuhler, the equation of motion is reformulated so that the bilateral and unilateral constraints appear both at position and velocity levels. After time discretization, the equation of motion involves two complementarity conditions and it can be solved at each time step using a monolithic semi-smooth Newton method. The numerical behavior of the proposed method is studied and compared to other approaches for a number of numerical examples. It is shown that the formulation offers a unified and valid approach for the description of contact conditions between rigid bodies as well as between flexible bodies.
Fil: Brüls, Olivier. Université de Liège; Bélgica
Fil: Acary, Vincent. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hidricas. Departamento de Informatica; Argentina - Materia
-
FLEXIBLE MULTIBODY SYSTEM
GENERALIZED-Α METHOD
INDEX REDUCTION
NONSMOOTH CONTACT DYNAMICS
TIME INTEGRATION
TIME-STEPPING SCHEMES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/78629
Ver los metadatos del registro completo
id |
CONICETDig_0b672a73cb70fab0b737612a26cf588e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/78629 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α schemeBrüls, OlivierAcary, VincentCardona, AlbertoFLEXIBLE MULTIBODY SYSTEMGENERALIZED-Α METHODINDEX REDUCTIONNONSMOOTH CONTACT DYNAMICSTIME INTEGRATIONTIME-STEPPING SCHEMEShttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2This paper presents a formalism for the transient simulation of nonsmooth dynamic mechanical systems composed of rigid and flexible bodies, kinematic joints and frictionless contact conditions. The proposed algorithm guarantees the exact satisfaction of the bilateral and unilateral constraints both at position and velocity levels. Thus, it significantly differs from penalty techniques since no penetration is allowed. The numerical scheme is obtained in two main steps. Firstly, a splitting method is used to isolate the contributions of impacts, which shall be integrated with only first-order accuracy, from smooth contributions which can be integrated using a higher order scheme. Secondly, following the idea of Gear, Gupta and Leimkuhler, the equation of motion is reformulated so that the bilateral and unilateral constraints appear both at position and velocity levels. After time discretization, the equation of motion involves two complementarity conditions and it can be solved at each time step using a monolithic semi-smooth Newton method. The numerical behavior of the proposed method is studied and compared to other approaches for a number of numerical examples. It is shown that the formulation offers a unified and valid approach for the description of contact conditions between rigid bodies as well as between flexible bodies.Fil: Brüls, Olivier. Université de Liège; BélgicaFil: Acary, Vincent. Institut National de Recherche en Informatique et en Automatique; FranciaFil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hidricas. Departamento de Informatica; ArgentinaElsevier Science SA2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/78629Brüls, Olivier; Acary, Vincent; Cardona, Alberto; Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme; Elsevier Science SA; Computer Methods in Applied Mechanics and Engineering; 281; 1; 11-2014; 131-1610045-7825CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2014.07.025info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0045782514002576info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:33Zoai:ri.conicet.gov.ar:11336/78629instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:33.862CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme |
title |
Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme |
spellingShingle |
Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme Brüls, Olivier FLEXIBLE MULTIBODY SYSTEM GENERALIZED-Α METHOD INDEX REDUCTION NONSMOOTH CONTACT DYNAMICS TIME INTEGRATION TIME-STEPPING SCHEMES |
title_short |
Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme |
title_full |
Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme |
title_fullStr |
Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme |
title_full_unstemmed |
Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme |
title_sort |
Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme |
dc.creator.none.fl_str_mv |
Brüls, Olivier Acary, Vincent Cardona, Alberto |
author |
Brüls, Olivier |
author_facet |
Brüls, Olivier Acary, Vincent Cardona, Alberto |
author_role |
author |
author2 |
Acary, Vincent Cardona, Alberto |
author2_role |
author author |
dc.subject.none.fl_str_mv |
FLEXIBLE MULTIBODY SYSTEM GENERALIZED-Α METHOD INDEX REDUCTION NONSMOOTH CONTACT DYNAMICS TIME INTEGRATION TIME-STEPPING SCHEMES |
topic |
FLEXIBLE MULTIBODY SYSTEM GENERALIZED-Α METHOD INDEX REDUCTION NONSMOOTH CONTACT DYNAMICS TIME INTEGRATION TIME-STEPPING SCHEMES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper presents a formalism for the transient simulation of nonsmooth dynamic mechanical systems composed of rigid and flexible bodies, kinematic joints and frictionless contact conditions. The proposed algorithm guarantees the exact satisfaction of the bilateral and unilateral constraints both at position and velocity levels. Thus, it significantly differs from penalty techniques since no penetration is allowed. The numerical scheme is obtained in two main steps. Firstly, a splitting method is used to isolate the contributions of impacts, which shall be integrated with only first-order accuracy, from smooth contributions which can be integrated using a higher order scheme. Secondly, following the idea of Gear, Gupta and Leimkuhler, the equation of motion is reformulated so that the bilateral and unilateral constraints appear both at position and velocity levels. After time discretization, the equation of motion involves two complementarity conditions and it can be solved at each time step using a monolithic semi-smooth Newton method. The numerical behavior of the proposed method is studied and compared to other approaches for a number of numerical examples. It is shown that the formulation offers a unified and valid approach for the description of contact conditions between rigid bodies as well as between flexible bodies. Fil: Brüls, Olivier. Université de Liège; Bélgica Fil: Acary, Vincent. Institut National de Recherche en Informatique et en Automatique; Francia Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hidricas. Departamento de Informatica; Argentina |
description |
This paper presents a formalism for the transient simulation of nonsmooth dynamic mechanical systems composed of rigid and flexible bodies, kinematic joints and frictionless contact conditions. The proposed algorithm guarantees the exact satisfaction of the bilateral and unilateral constraints both at position and velocity levels. Thus, it significantly differs from penalty techniques since no penetration is allowed. The numerical scheme is obtained in two main steps. Firstly, a splitting method is used to isolate the contributions of impacts, which shall be integrated with only first-order accuracy, from smooth contributions which can be integrated using a higher order scheme. Secondly, following the idea of Gear, Gupta and Leimkuhler, the equation of motion is reformulated so that the bilateral and unilateral constraints appear both at position and velocity levels. After time discretization, the equation of motion involves two complementarity conditions and it can be solved at each time step using a monolithic semi-smooth Newton method. The numerical behavior of the proposed method is studied and compared to other approaches for a number of numerical examples. It is shown that the formulation offers a unified and valid approach for the description of contact conditions between rigid bodies as well as between flexible bodies. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/78629 Brüls, Olivier; Acary, Vincent; Cardona, Alberto; Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme; Elsevier Science SA; Computer Methods in Applied Mechanics and Engineering; 281; 1; 11-2014; 131-161 0045-7825 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/78629 |
identifier_str_mv |
Brüls, Olivier; Acary, Vincent; Cardona, Alberto; Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme; Elsevier Science SA; Computer Methods in Applied Mechanics and Engineering; 281; 1; 11-2014; 131-161 0045-7825 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2014.07.025 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0045782514002576 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science SA |
publisher.none.fl_str_mv |
Elsevier Science SA |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613371000782848 |
score |
13.070432 |