A Nonlinear Beam Element Formulation in the Framework of an Energy Preserving Time Integration Scheme for Constrained Multibody Systems Dynamics

Autores
Lens, Elisabet V.; Cardona, Alberto
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A nonlinear large rotations beam element is presented within the framework of an energy conserving algorithm which was presented in previous works [Lens E, Cardona A, Ge´radin M. Energy preserving time integration for constrained multibody systems. Multibody System Dyn 2004;11:41?61; Lens E. Energy preserving/decaying time integration schemes for multibody systems dynamics. PhD thesis, Universidad Nacional del Litoral, Argentina; 2006]. Flexibility is dealt with easily in energy conserving algorithms only for finite element models with displacement degrees of freedom. However, beam models which have rotation degrees of freedom are more cumbersome to be handled. The beam model which we introduce in this paper has simplifications that lead to quite compact expressions of its different terms. This kind of algorithms has many advantages, both theoretical and practical, because of its unconditional stability which is guaranteed even in the nonlinear regime.
Fil: Lens, Elisabet V.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Materia
Flexible Multibody Dynamics
Nonlinear Beam
Energy Conservation
Large Finite Rotations
Flexible Dynamics Impacts
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/20490

id CONICETDig_00d58d96d53135242f0053c7365aaac5
oai_identifier_str oai:ri.conicet.gov.ar:11336/20490
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Nonlinear Beam Element Formulation in the Framework of an Energy Preserving Time Integration Scheme for Constrained Multibody Systems DynamicsLens, Elisabet V.Cardona, AlbertoFlexible Multibody DynamicsNonlinear BeamEnergy ConservationLarge Finite RotationsFlexible Dynamics Impactshttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2A nonlinear large rotations beam element is presented within the framework of an energy conserving algorithm which was presented in previous works [Lens E, Cardona A, Ge´radin M. Energy preserving time integration for constrained multibody systems. Multibody System Dyn 2004;11:41?61; Lens E. Energy preserving/decaying time integration schemes for multibody systems dynamics. PhD thesis, Universidad Nacional del Litoral, Argentina; 2006]. Flexibility is dealt with easily in energy conserving algorithms only for finite element models with displacement degrees of freedom. However, beam models which have rotation degrees of freedom are more cumbersome to be handled. The beam model which we introduce in this paper has simplifications that lead to quite compact expressions of its different terms. This kind of algorithms has many advantages, both theoretical and practical, because of its unconditional stability which is guaranteed even in the nonlinear regime.Fil: Lens, Elisabet V.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaPergamon-Elsevier Science Ltd2007-07-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20490Lens, Elisabet V.; Cardona, Alberto; A Nonlinear Beam Element Formulation in the Framework of an Energy Preserving Time Integration Scheme for Constrained Multibody Systems Dynamics; Pergamon-Elsevier Science Ltd; Computers & Structures; 86; 1-2; 17-7-2007; 47-630045-7949CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compstruc.2007.05.036info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S004579490700212X?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:43:23Zoai:ri.conicet.gov.ar:11336/20490instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:43:23.664CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Nonlinear Beam Element Formulation in the Framework of an Energy Preserving Time Integration Scheme for Constrained Multibody Systems Dynamics
title A Nonlinear Beam Element Formulation in the Framework of an Energy Preserving Time Integration Scheme for Constrained Multibody Systems Dynamics
spellingShingle A Nonlinear Beam Element Formulation in the Framework of an Energy Preserving Time Integration Scheme for Constrained Multibody Systems Dynamics
Lens, Elisabet V.
Flexible Multibody Dynamics
Nonlinear Beam
Energy Conservation
Large Finite Rotations
Flexible Dynamics Impacts
title_short A Nonlinear Beam Element Formulation in the Framework of an Energy Preserving Time Integration Scheme for Constrained Multibody Systems Dynamics
title_full A Nonlinear Beam Element Formulation in the Framework of an Energy Preserving Time Integration Scheme for Constrained Multibody Systems Dynamics
title_fullStr A Nonlinear Beam Element Formulation in the Framework of an Energy Preserving Time Integration Scheme for Constrained Multibody Systems Dynamics
title_full_unstemmed A Nonlinear Beam Element Formulation in the Framework of an Energy Preserving Time Integration Scheme for Constrained Multibody Systems Dynamics
title_sort A Nonlinear Beam Element Formulation in the Framework of an Energy Preserving Time Integration Scheme for Constrained Multibody Systems Dynamics
dc.creator.none.fl_str_mv Lens, Elisabet V.
Cardona, Alberto
author Lens, Elisabet V.
author_facet Lens, Elisabet V.
Cardona, Alberto
author_role author
author2 Cardona, Alberto
author2_role author
dc.subject.none.fl_str_mv Flexible Multibody Dynamics
Nonlinear Beam
Energy Conservation
Large Finite Rotations
Flexible Dynamics Impacts
topic Flexible Multibody Dynamics
Nonlinear Beam
Energy Conservation
Large Finite Rotations
Flexible Dynamics Impacts
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv A nonlinear large rotations beam element is presented within the framework of an energy conserving algorithm which was presented in previous works [Lens E, Cardona A, Ge´radin M. Energy preserving time integration for constrained multibody systems. Multibody System Dyn 2004;11:41?61; Lens E. Energy preserving/decaying time integration schemes for multibody systems dynamics. PhD thesis, Universidad Nacional del Litoral, Argentina; 2006]. Flexibility is dealt with easily in energy conserving algorithms only for finite element models with displacement degrees of freedom. However, beam models which have rotation degrees of freedom are more cumbersome to be handled. The beam model which we introduce in this paper has simplifications that lead to quite compact expressions of its different terms. This kind of algorithms has many advantages, both theoretical and practical, because of its unconditional stability which is guaranteed even in the nonlinear regime.
Fil: Lens, Elisabet V.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
description A nonlinear large rotations beam element is presented within the framework of an energy conserving algorithm which was presented in previous works [Lens E, Cardona A, Ge´radin M. Energy preserving time integration for constrained multibody systems. Multibody System Dyn 2004;11:41?61; Lens E. Energy preserving/decaying time integration schemes for multibody systems dynamics. PhD thesis, Universidad Nacional del Litoral, Argentina; 2006]. Flexibility is dealt with easily in energy conserving algorithms only for finite element models with displacement degrees of freedom. However, beam models which have rotation degrees of freedom are more cumbersome to be handled. The beam model which we introduce in this paper has simplifications that lead to quite compact expressions of its different terms. This kind of algorithms has many advantages, both theoretical and practical, because of its unconditional stability which is guaranteed even in the nonlinear regime.
publishDate 2007
dc.date.none.fl_str_mv 2007-07-17
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/20490
Lens, Elisabet V.; Cardona, Alberto; A Nonlinear Beam Element Formulation in the Framework of an Energy Preserving Time Integration Scheme for Constrained Multibody Systems Dynamics; Pergamon-Elsevier Science Ltd; Computers & Structures; 86; 1-2; 17-7-2007; 47-63
0045-7949
CONICET Digital
CONICET
url http://hdl.handle.net/11336/20490
identifier_str_mv Lens, Elisabet V.; Cardona, Alberto; A Nonlinear Beam Element Formulation in the Framework of an Energy Preserving Time Integration Scheme for Constrained Multibody Systems Dynamics; Pergamon-Elsevier Science Ltd; Computers & Structures; 86; 1-2; 17-7-2007; 47-63
0045-7949
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compstruc.2007.05.036
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S004579490700212X?via%3Dihub
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614469006655488
score 13.070432