On the Use of Lie Group Time Integrators in Multibody Dynamics
- Autores
- Bruls, Olivier; Cardona, Alberto
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper proposes a family of Lie group time integrators for the simulation of flexible multibody systems. The method provides an elegant solution to the rotation parameterization problem. As an extension of the classical generalized-alpha method for dynamic systems, it can deal with constrained equations of motion. Second-order accuracy is demonstrated in the unconstrained case. The performance is illustrated on several critical benchmarks of rigid body systems with high rotation speeds and second order accuracy is evidenced in all of them, even for constrained cases. The remarkable simplicity of the new algorithms opens some interesting perspectives for real-time applications, model-based control and optimization of multibody systems.
Fil: Bruls, Olivier. Universite de Liege; Bélgica
Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina - Materia
-
Multibody Dynamics
Time Integrators - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/13630
Ver los metadatos del registro completo
id |
CONICETDig_e099d759550678677f502321b0b46a50 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/13630 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the Use of Lie Group Time Integrators in Multibody DynamicsBruls, OlivierCardona, AlbertoMultibody DynamicsTime Integratorshttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2This paper proposes a family of Lie group time integrators for the simulation of flexible multibody systems. The method provides an elegant solution to the rotation parameterization problem. As an extension of the classical generalized-alpha method for dynamic systems, it can deal with constrained equations of motion. Second-order accuracy is demonstrated in the unconstrained case. The performance is illustrated on several critical benchmarks of rigid body systems with high rotation speeds and second order accuracy is evidenced in all of them, even for constrained cases. The remarkable simplicity of the new algorithms opens some interesting perspectives for real-time applications, model-based control and optimization of multibody systems.Fil: Bruls, Olivier. Universite de Liege; BélgicaFil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; ArgentinaAmerican Society of Mechanical Engineers ASME2010-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13630Bruls, Olivier; Cardona, Alberto; On the Use of Lie Group Time Integrators in Multibody Dynamics; American Society of Mechanical Engineers ASME; Journal Of Computational And Nonlinear Dynamics; 5; 7-2010; 1-131555-1415enginfo:eu-repo/semantics/altIdentifier/url/http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&smode=strresults&sort=chron&maxdisp=25&threshold=0&pjournals=ASMECP%2CAMREAD%2CJAMCAV%2CJBAEAI%2CJBENDY%2CJCNDDM%2CJCISB6%2CJDSMAA%2CJEFIA8%2CJEPAE4%2CJEPOA8%2CJERTD2%2CJETPEZ%2CJEMTA8%2CJFEGAinfo:eu-repo/semantics/altIdentifier/doi/10.1115/1.4001370info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:45:52Zoai:ri.conicet.gov.ar:11336/13630instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:45:53.159CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the Use of Lie Group Time Integrators in Multibody Dynamics |
title |
On the Use of Lie Group Time Integrators in Multibody Dynamics |
spellingShingle |
On the Use of Lie Group Time Integrators in Multibody Dynamics Bruls, Olivier Multibody Dynamics Time Integrators |
title_short |
On the Use of Lie Group Time Integrators in Multibody Dynamics |
title_full |
On the Use of Lie Group Time Integrators in Multibody Dynamics |
title_fullStr |
On the Use of Lie Group Time Integrators in Multibody Dynamics |
title_full_unstemmed |
On the Use of Lie Group Time Integrators in Multibody Dynamics |
title_sort |
On the Use of Lie Group Time Integrators in Multibody Dynamics |
dc.creator.none.fl_str_mv |
Bruls, Olivier Cardona, Alberto |
author |
Bruls, Olivier |
author_facet |
Bruls, Olivier Cardona, Alberto |
author_role |
author |
author2 |
Cardona, Alberto |
author2_role |
author |
dc.subject.none.fl_str_mv |
Multibody Dynamics Time Integrators |
topic |
Multibody Dynamics Time Integrators |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper proposes a family of Lie group time integrators for the simulation of flexible multibody systems. The method provides an elegant solution to the rotation parameterization problem. As an extension of the classical generalized-alpha method for dynamic systems, it can deal with constrained equations of motion. Second-order accuracy is demonstrated in the unconstrained case. The performance is illustrated on several critical benchmarks of rigid body systems with high rotation speeds and second order accuracy is evidenced in all of them, even for constrained cases. The remarkable simplicity of the new algorithms opens some interesting perspectives for real-time applications, model-based control and optimization of multibody systems. Fil: Bruls, Olivier. Universite de Liege; Bélgica Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina |
description |
This paper proposes a family of Lie group time integrators for the simulation of flexible multibody systems. The method provides an elegant solution to the rotation parameterization problem. As an extension of the classical generalized-alpha method for dynamic systems, it can deal with constrained equations of motion. Second-order accuracy is demonstrated in the unconstrained case. The performance is illustrated on several critical benchmarks of rigid body systems with high rotation speeds and second order accuracy is evidenced in all of them, even for constrained cases. The remarkable simplicity of the new algorithms opens some interesting perspectives for real-time applications, model-based control and optimization of multibody systems. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/13630 Bruls, Olivier; Cardona, Alberto; On the Use of Lie Group Time Integrators in Multibody Dynamics; American Society of Mechanical Engineers ASME; Journal Of Computational And Nonlinear Dynamics; 5; 7-2010; 1-13 1555-1415 |
url |
http://hdl.handle.net/11336/13630 |
identifier_str_mv |
Bruls, Olivier; Cardona, Alberto; On the Use of Lie Group Time Integrators in Multibody Dynamics; American Society of Mechanical Engineers ASME; Journal Of Computational And Nonlinear Dynamics; 5; 7-2010; 1-13 1555-1415 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&smode=strresults&sort=chron&maxdisp=25&threshold=0&pjournals=ASMECP%2CAMREAD%2CJAMCAV%2CJBAEAI%2CJBENDY%2CJCNDDM%2CJCISB6%2CJDSMAA%2CJEFIA8%2CJEPAE4%2CJEPOA8%2CJERTD2%2CJETPEZ%2CJEMTA8%2CJFEGA info:eu-repo/semantics/altIdentifier/doi/10.1115/1.4001370 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Society of Mechanical Engineers ASME |
publisher.none.fl_str_mv |
American Society of Mechanical Engineers ASME |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614499301064704 |
score |
13.070432 |