On the Use of Lie Group Time Integrators in Multibody Dynamics

Autores
Bruls, Olivier; Cardona, Alberto
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper proposes a family of Lie group time integrators for the simulation of flexible multibody systems. The method provides an elegant solution to the rotation parameterization problem. As an extension of the classical generalized-alpha method for dynamic systems, it can deal with constrained equations of motion. Second-order accuracy is demonstrated in the unconstrained case.  The performance is illustrated on several critical benchmarks of rigid body systems with high rotation speeds and second order accuracy is evidenced in all of them, even for constrained cases. The remarkable simplicity of the new algorithms opens some interesting perspectives for real-time applications, model-based control and optimization of multibody systems.
Fil: Bruls, Olivier. Universite de Liege; Bélgica
Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina
Materia
Multibody Dynamics
Time Integrators
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/13630

id CONICETDig_e099d759550678677f502321b0b46a50
oai_identifier_str oai:ri.conicet.gov.ar:11336/13630
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the Use of Lie Group Time Integrators in Multibody DynamicsBruls, OlivierCardona, AlbertoMultibody DynamicsTime Integratorshttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2This paper proposes a family of Lie group time integrators for the simulation of flexible multibody systems. The method provides an elegant solution to the rotation parameterization problem. As an extension of the classical generalized-alpha method for dynamic systems, it can deal with constrained equations of motion. Second-order accuracy is demonstrated in the unconstrained case.  The performance is illustrated on several critical benchmarks of rigid body systems with high rotation speeds and second order accuracy is evidenced in all of them, even for constrained cases. The remarkable simplicity of the new algorithms opens some interesting perspectives for real-time applications, model-based control and optimization of multibody systems.Fil: Bruls, Olivier. Universite de Liege; BélgicaFil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; ArgentinaAmerican Society of Mechanical Engineers ASME2010-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13630Bruls, Olivier; Cardona, Alberto; On the Use of Lie Group Time Integrators in Multibody Dynamics; American Society of Mechanical Engineers ASME; Journal Of Computational And Nonlinear Dynamics; 5; 7-2010; 1-131555-1415enginfo:eu-repo/semantics/altIdentifier/url/http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&smode=strresults&sort=chron&maxdisp=25&threshold=0&pjournals=ASMECP%2CAMREAD%2CJAMCAV%2CJBAEAI%2CJBENDY%2CJCNDDM%2CJCISB6%2CJDSMAA%2CJEFIA8%2CJEPAE4%2CJEPOA8%2CJERTD2%2CJETPEZ%2CJEMTA8%2CJFEGAinfo:eu-repo/semantics/altIdentifier/doi/10.1115/1.4001370info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:45:52Zoai:ri.conicet.gov.ar:11336/13630instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:45:53.159CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the Use of Lie Group Time Integrators in Multibody Dynamics
title On the Use of Lie Group Time Integrators in Multibody Dynamics
spellingShingle On the Use of Lie Group Time Integrators in Multibody Dynamics
Bruls, Olivier
Multibody Dynamics
Time Integrators
title_short On the Use of Lie Group Time Integrators in Multibody Dynamics
title_full On the Use of Lie Group Time Integrators in Multibody Dynamics
title_fullStr On the Use of Lie Group Time Integrators in Multibody Dynamics
title_full_unstemmed On the Use of Lie Group Time Integrators in Multibody Dynamics
title_sort On the Use of Lie Group Time Integrators in Multibody Dynamics
dc.creator.none.fl_str_mv Bruls, Olivier
Cardona, Alberto
author Bruls, Olivier
author_facet Bruls, Olivier
Cardona, Alberto
author_role author
author2 Cardona, Alberto
author2_role author
dc.subject.none.fl_str_mv Multibody Dynamics
Time Integrators
topic Multibody Dynamics
Time Integrators
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This paper proposes a family of Lie group time integrators for the simulation of flexible multibody systems. The method provides an elegant solution to the rotation parameterization problem. As an extension of the classical generalized-alpha method for dynamic systems, it can deal with constrained equations of motion. Second-order accuracy is demonstrated in the unconstrained case.  The performance is illustrated on several critical benchmarks of rigid body systems with high rotation speeds and second order accuracy is evidenced in all of them, even for constrained cases. The remarkable simplicity of the new algorithms opens some interesting perspectives for real-time applications, model-based control and optimization of multibody systems.
Fil: Bruls, Olivier. Universite de Liege; Bélgica
Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina
description This paper proposes a family of Lie group time integrators for the simulation of flexible multibody systems. The method provides an elegant solution to the rotation parameterization problem. As an extension of the classical generalized-alpha method for dynamic systems, it can deal with constrained equations of motion. Second-order accuracy is demonstrated in the unconstrained case.  The performance is illustrated on several critical benchmarks of rigid body systems with high rotation speeds and second order accuracy is evidenced in all of them, even for constrained cases. The remarkable simplicity of the new algorithms opens some interesting perspectives for real-time applications, model-based control and optimization of multibody systems.
publishDate 2010
dc.date.none.fl_str_mv 2010-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/13630
Bruls, Olivier; Cardona, Alberto; On the Use of Lie Group Time Integrators in Multibody Dynamics; American Society of Mechanical Engineers ASME; Journal Of Computational And Nonlinear Dynamics; 5; 7-2010; 1-13
1555-1415
url http://hdl.handle.net/11336/13630
identifier_str_mv Bruls, Olivier; Cardona, Alberto; On the Use of Lie Group Time Integrators in Multibody Dynamics; American Society of Mechanical Engineers ASME; Journal Of Computational And Nonlinear Dynamics; 5; 7-2010; 1-13
1555-1415
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&smode=strresults&sort=chron&maxdisp=25&threshold=0&pjournals=ASMECP%2CAMREAD%2CJAMCAV%2CJBAEAI%2CJBENDY%2CJCNDDM%2CJCISB6%2CJDSMAA%2CJEFIA8%2CJEPAE4%2CJEPOA8%2CJERTD2%2CJETPEZ%2CJEMTA8%2CJFEGA
info:eu-repo/semantics/altIdentifier/doi/10.1115/1.4001370
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Society of Mechanical Engineers ASME
publisher.none.fl_str_mv American Society of Mechanical Engineers ASME
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614499301064704
score 13.070432