Inverse percolation by removing straight rigid rods from square lattices
- Autores
- Ramírez, Lucía Soledad; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Numerical simulations and finite-size scaling analysis have beencarried out to study the problem of inverse percolation by removing straightrigid rods from square lattices. The process starts with an initial configuration, where all lattice sites are occupied and, obviously, the opposite sides of the lattice are connected by nearest-neighbor occupied sites. Then, the system is diluted by randomly removing straight rigid rods of length k (k-mers) from the surface. The central idea of this paper is based on finding the maximumconcentration of occupied sites (minimum concentration of holes) for whichconnectivity disappears. This particular value of concentration is called theinverse percolation threshold, and determines a well-defined geometrical phasetransition in the system. The results, obtained for k ranging from 2 to 256,showed a nonmonotonic size k dependence for the critical concentration,which rapidly decreases for small particle sizes (1 ⩽k ⩽3 ). Then, it growsfor k = 4, 5 and 6, goes through a maximum at k = 7, and finally decreasesagain and asymptotically converges towards a definite value for large valuesof k. Percolating and non-percolating phases extend to infinity in the space ofthe parameter k and, consequently, the model presents percolation transitionin all ranges of said value. This finding contrasts with the results obtainedin literature for a complementary problem, where straight rigid k-mers arerandomly and irreversibly deposited on a square lattice, and the percolationtransition only exists for values of k ranging between 1 and approximately1.2 × 10^4. The breaking of particle-hole symmetry, a distinctive characteristicof the k-mers statistics, is the source of this asymmetric behavior. Finally, the accurate determination of critical exponents reveals that the model belongs to the same universality class as random percolation regardless of the value of kconsidered.
Fil: Ramírez, Lucía Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina. Universidad Nacional de San Luis; Argentina
Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina. Universidad Nacional de San Luis; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina. Universidad Nacional de San Luis; Argentina - Materia
-
Classical Monte Carlo Simulations
Classical Phase Transitions (Theory)
Phase Diagrams (Theory)
Percolation Problems (Theory) - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14205
Ver los metadatos del registro completo
id |
CONICETDig_5bfad536ebc078ccae7b5a41f8ba390e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14205 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Inverse percolation by removing straight rigid rods from square latticesRamírez, Lucía SoledadCentres, Paulo MarceloRamirez Pastor, Antonio JoseClassical Monte Carlo SimulationsClassical Phase Transitions (Theory)Phase Diagrams (Theory)Percolation Problems (Theory)https://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Numerical simulations and finite-size scaling analysis have beencarried out to study the problem of inverse percolation by removing straightrigid rods from square lattices. The process starts with an initial configuration, where all lattice sites are occupied and, obviously, the opposite sides of the lattice are connected by nearest-neighbor occupied sites. Then, the system is diluted by randomly removing straight rigid rods of length k (k-mers) from the surface. The central idea of this paper is based on finding the maximumconcentration of occupied sites (minimum concentration of holes) for whichconnectivity disappears. This particular value of concentration is called theinverse percolation threshold, and determines a well-defined geometrical phasetransition in the system. The results, obtained for k ranging from 2 to 256,showed a nonmonotonic size k dependence for the critical concentration,which rapidly decreases for small particle sizes (1 ⩽k ⩽3 ). Then, it growsfor k = 4, 5 and 6, goes through a maximum at k = 7, and finally decreasesagain and asymptotically converges towards a definite value for large valuesof k. Percolating and non-percolating phases extend to infinity in the space ofthe parameter k and, consequently, the model presents percolation transitionin all ranges of said value. This finding contrasts with the results obtainedin literature for a complementary problem, where straight rigid k-mers arerandomly and irreversibly deposited on a square lattice, and the percolationtransition only exists for values of k ranging between 1 and approximately1.2 × 10^4. The breaking of particle-hole symmetry, a distinctive characteristicof the k-mers statistics, is the source of this asymmetric behavior. Finally, the accurate determination of critical exponents reveals that the model belongs to the same universality class as random percolation regardless of the value of kconsidered.Fil: Ramírez, Lucía Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina. Universidad Nacional de San Luis; ArgentinaFil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina. Universidad Nacional de San Luis; ArgentinaFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina. Universidad Nacional de San Luis; ArgentinaIop Publishing2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14205Ramírez, Lucía Soledad; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Inverse percolation by removing straight rigid rods from square lattices; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2015; 9-2015; 1-181742-5468enginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-5468/2015/09/P09003/metainfo:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/2015/09/P09003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:56Zoai:ri.conicet.gov.ar:11336/14205instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:56.881CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Inverse percolation by removing straight rigid rods from square lattices |
title |
Inverse percolation by removing straight rigid rods from square lattices |
spellingShingle |
Inverse percolation by removing straight rigid rods from square lattices Ramírez, Lucía Soledad Classical Monte Carlo Simulations Classical Phase Transitions (Theory) Phase Diagrams (Theory) Percolation Problems (Theory) |
title_short |
Inverse percolation by removing straight rigid rods from square lattices |
title_full |
Inverse percolation by removing straight rigid rods from square lattices |
title_fullStr |
Inverse percolation by removing straight rigid rods from square lattices |
title_full_unstemmed |
Inverse percolation by removing straight rigid rods from square lattices |
title_sort |
Inverse percolation by removing straight rigid rods from square lattices |
dc.creator.none.fl_str_mv |
Ramírez, Lucía Soledad Centres, Paulo Marcelo Ramirez Pastor, Antonio Jose |
author |
Ramírez, Lucía Soledad |
author_facet |
Ramírez, Lucía Soledad Centres, Paulo Marcelo Ramirez Pastor, Antonio Jose |
author_role |
author |
author2 |
Centres, Paulo Marcelo Ramirez Pastor, Antonio Jose |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Classical Monte Carlo Simulations Classical Phase Transitions (Theory) Phase Diagrams (Theory) Percolation Problems (Theory) |
topic |
Classical Monte Carlo Simulations Classical Phase Transitions (Theory) Phase Diagrams (Theory) Percolation Problems (Theory) |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Numerical simulations and finite-size scaling analysis have beencarried out to study the problem of inverse percolation by removing straightrigid rods from square lattices. The process starts with an initial configuration, where all lattice sites are occupied and, obviously, the opposite sides of the lattice are connected by nearest-neighbor occupied sites. Then, the system is diluted by randomly removing straight rigid rods of length k (k-mers) from the surface. The central idea of this paper is based on finding the maximumconcentration of occupied sites (minimum concentration of holes) for whichconnectivity disappears. This particular value of concentration is called theinverse percolation threshold, and determines a well-defined geometrical phasetransition in the system. The results, obtained for k ranging from 2 to 256,showed a nonmonotonic size k dependence for the critical concentration,which rapidly decreases for small particle sizes (1 ⩽k ⩽3 ). Then, it growsfor k = 4, 5 and 6, goes through a maximum at k = 7, and finally decreasesagain and asymptotically converges towards a definite value for large valuesof k. Percolating and non-percolating phases extend to infinity in the space ofthe parameter k and, consequently, the model presents percolation transitionin all ranges of said value. This finding contrasts with the results obtainedin literature for a complementary problem, where straight rigid k-mers arerandomly and irreversibly deposited on a square lattice, and the percolationtransition only exists for values of k ranging between 1 and approximately1.2 × 10^4. The breaking of particle-hole symmetry, a distinctive characteristicof the k-mers statistics, is the source of this asymmetric behavior. Finally, the accurate determination of critical exponents reveals that the model belongs to the same universality class as random percolation regardless of the value of kconsidered. Fil: Ramírez, Lucía Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina. Universidad Nacional de San Luis; Argentina Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina. Universidad Nacional de San Luis; Argentina Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina. Universidad Nacional de San Luis; Argentina |
description |
Numerical simulations and finite-size scaling analysis have beencarried out to study the problem of inverse percolation by removing straightrigid rods from square lattices. The process starts with an initial configuration, where all lattice sites are occupied and, obviously, the opposite sides of the lattice are connected by nearest-neighbor occupied sites. Then, the system is diluted by randomly removing straight rigid rods of length k (k-mers) from the surface. The central idea of this paper is based on finding the maximumconcentration of occupied sites (minimum concentration of holes) for whichconnectivity disappears. This particular value of concentration is called theinverse percolation threshold, and determines a well-defined geometrical phasetransition in the system. The results, obtained for k ranging from 2 to 256,showed a nonmonotonic size k dependence for the critical concentration,which rapidly decreases for small particle sizes (1 ⩽k ⩽3 ). Then, it growsfor k = 4, 5 and 6, goes through a maximum at k = 7, and finally decreasesagain and asymptotically converges towards a definite value for large valuesof k. Percolating and non-percolating phases extend to infinity in the space ofthe parameter k and, consequently, the model presents percolation transitionin all ranges of said value. This finding contrasts with the results obtainedin literature for a complementary problem, where straight rigid k-mers arerandomly and irreversibly deposited on a square lattice, and the percolationtransition only exists for values of k ranging between 1 and approximately1.2 × 10^4. The breaking of particle-hole symmetry, a distinctive characteristicof the k-mers statistics, is the source of this asymmetric behavior. Finally, the accurate determination of critical exponents reveals that the model belongs to the same universality class as random percolation regardless of the value of kconsidered. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14205 Ramírez, Lucía Soledad; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Inverse percolation by removing straight rigid rods from square lattices; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2015; 9-2015; 1-18 1742-5468 |
url |
http://hdl.handle.net/11336/14205 |
identifier_str_mv |
Ramírez, Lucía Soledad; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Inverse percolation by removing straight rigid rods from square lattices; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2015; 9-2015; 1-18 1742-5468 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-5468/2015/09/P09003/meta info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/2015/09/P09003 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Iop Publishing |
publisher.none.fl_str_mv |
Iop Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613046891184128 |
score |
13.070432 |