Thermal percolation for interacting monomers adsorbed on square lattices
- Autores
- Gimenez, Maria Cecilia; Nieto Quintas, Felix Daniel; Ramirez Pastor, Antonio Jose
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper the percolation of monomers on a square lattice is studied as the particles interact with either repulsive or attractive energies. By means of a finite-size scaling analysis, the critical exponents and the scaling collapsing of the fraction of percolating lattice are found. A phase diagram separating a percolating from a non-percolating region is determined. The main features of the phase diagram are discussed in terms of simple considerations related to the interactions present in the problem. The influence of the phase transitions occurring in the system is reflected by the phase diagram. In addition, a scaling treatment maintaining constant the surface coverage and varying the temperature of the system is performed. In all the considered cases, the universality class of the model is found to be the same as for the random percolation model.
Fil: Gimenez, Maria Cecilia. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Nieto Quintas, Felix Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina - Materia
-
Percolation
Monte Carlo Simulations
Finite Size Scaling Theory
Phase Transitions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/148578
Ver los metadatos del registro completo
id |
CONICETDig_8952b63b2c72e4106edbcef55072494b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/148578 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Thermal percolation for interacting monomers adsorbed on square latticesGimenez, Maria CeciliaNieto Quintas, Felix DanielRamirez Pastor, Antonio JosePercolationMonte Carlo SimulationsFinite Size Scaling TheoryPhase Transitionshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this paper the percolation of monomers on a square lattice is studied as the particles interact with either repulsive or attractive energies. By means of a finite-size scaling analysis, the critical exponents and the scaling collapsing of the fraction of percolating lattice are found. A phase diagram separating a percolating from a non-percolating region is determined. The main features of the phase diagram are discussed in terms of simple considerations related to the interactions present in the problem. The influence of the phase transitions occurring in the system is reflected by the phase diagram. In addition, a scaling treatment maintaining constant the surface coverage and varying the temperature of the system is performed. In all the considered cases, the universality class of the model is found to be the same as for the random percolation model.Fil: Gimenez, Maria Cecilia. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Nieto Quintas, Felix Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaIOP Publishing2005-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/148578Gimenez, Maria Cecilia; Nieto Quintas, Felix Daniel; Ramirez Pastor, Antonio Jose; Thermal percolation for interacting monomers adsorbed on square lattices; IOP Publishing; Journal of Physics A: Mathematical and General; 38; 15; 3-2005; 3253-32640305-4470CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/0305-4470/38/15/002info:eu-repo/semantics/altIdentifier/doi/10.1088/0305-4470/38/15/002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:32Zoai:ri.conicet.gov.ar:11336/148578instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:32.545CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Thermal percolation for interacting monomers adsorbed on square lattices |
title |
Thermal percolation for interacting monomers adsorbed on square lattices |
spellingShingle |
Thermal percolation for interacting monomers adsorbed on square lattices Gimenez, Maria Cecilia Percolation Monte Carlo Simulations Finite Size Scaling Theory Phase Transitions |
title_short |
Thermal percolation for interacting monomers adsorbed on square lattices |
title_full |
Thermal percolation for interacting monomers adsorbed on square lattices |
title_fullStr |
Thermal percolation for interacting monomers adsorbed on square lattices |
title_full_unstemmed |
Thermal percolation for interacting monomers adsorbed on square lattices |
title_sort |
Thermal percolation for interacting monomers adsorbed on square lattices |
dc.creator.none.fl_str_mv |
Gimenez, Maria Cecilia Nieto Quintas, Felix Daniel Ramirez Pastor, Antonio Jose |
author |
Gimenez, Maria Cecilia |
author_facet |
Gimenez, Maria Cecilia Nieto Quintas, Felix Daniel Ramirez Pastor, Antonio Jose |
author_role |
author |
author2 |
Nieto Quintas, Felix Daniel Ramirez Pastor, Antonio Jose |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Percolation Monte Carlo Simulations Finite Size Scaling Theory Phase Transitions |
topic |
Percolation Monte Carlo Simulations Finite Size Scaling Theory Phase Transitions |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper the percolation of monomers on a square lattice is studied as the particles interact with either repulsive or attractive energies. By means of a finite-size scaling analysis, the critical exponents and the scaling collapsing of the fraction of percolating lattice are found. A phase diagram separating a percolating from a non-percolating region is determined. The main features of the phase diagram are discussed in terms of simple considerations related to the interactions present in the problem. The influence of the phase transitions occurring in the system is reflected by the phase diagram. In addition, a scaling treatment maintaining constant the surface coverage and varying the temperature of the system is performed. In all the considered cases, the universality class of the model is found to be the same as for the random percolation model. Fil: Gimenez, Maria Cecilia. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Nieto Quintas, Felix Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina |
description |
In this paper the percolation of monomers on a square lattice is studied as the particles interact with either repulsive or attractive energies. By means of a finite-size scaling analysis, the critical exponents and the scaling collapsing of the fraction of percolating lattice are found. A phase diagram separating a percolating from a non-percolating region is determined. The main features of the phase diagram are discussed in terms of simple considerations related to the interactions present in the problem. The influence of the phase transitions occurring in the system is reflected by the phase diagram. In addition, a scaling treatment maintaining constant the surface coverage and varying the temperature of the system is performed. In all the considered cases, the universality class of the model is found to be the same as for the random percolation model. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/148578 Gimenez, Maria Cecilia; Nieto Quintas, Felix Daniel; Ramirez Pastor, Antonio Jose; Thermal percolation for interacting monomers adsorbed on square lattices; IOP Publishing; Journal of Physics A: Mathematical and General; 38; 15; 3-2005; 3253-3264 0305-4470 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/148578 |
identifier_str_mv |
Gimenez, Maria Cecilia; Nieto Quintas, Felix Daniel; Ramirez Pastor, Antonio Jose; Thermal percolation for interacting monomers adsorbed on square lattices; IOP Publishing; Journal of Physics A: Mathematical and General; 38; 15; 3-2005; 3253-3264 0305-4470 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/0305-4470/38/15/002 info:eu-repo/semantics/altIdentifier/doi/10.1088/0305-4470/38/15/002 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613218281979904 |
score |
13.070432 |