Site-bond percolation on triangular lattices: Monte Carlo simulation and analytical approach
- Autores
- Gonzalez Flores, Mariela Isabel; Centres, Paulo Marcelo; Lebrecht, W.; Ramirez Pastor, Antonio Jose; Nieto Quintas, Felix Daniel
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A generalization of the pure site and pure bond percolation problems called site–bond percolation on a triangular lattice is studied. Motivated by considerations of cluster connectivity, two distinct schemes (denoted as S∩B and S∪B) for site–bond percolation are used. In S∩B (S∪B), two points are said to be connected if a sequence of occupied sites and (or ) bonds joins them. By using finite-size scaling theory, data from S∩B and S∪B are analyzed in order to determine (i) the phase boundary between the percolating and non-percolating regions and (ii) the numerical values of the critical exponents of the phase transition occurring in the system. A theoretical approach, based on exact calculations of configurations on finite triangular cells, is applied to study the site–bond percolation on triangular lattices. The percolation processes have been monitored by following the percolation function, defined as the ratio between the number of percolating configurations and the total number of available configurations for a given cell size and concentration of occupied elements. A comparison of the results obtained by these two methods has been performed and discussed.
Fil: Gonzalez Flores, Mariela Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina. Universidad de La Frontera. Departamento de Física; Chile
Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina
Fil: Lebrecht, W.. Universidad de La Frontera. Departamento de Física; Chile
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina
Fil: Nieto Quintas, Felix Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina - Materia
-
Percolation
Phase Transition
Monte Carlo Simulation
Phase Diagrams - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/5676
Ver los metadatos del registro completo
id |
CONICETDig_56a39e18eff89ce064e8c979363d576c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/5676 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Site-bond percolation on triangular lattices: Monte Carlo simulation and analytical approachGonzalez Flores, Mariela IsabelCentres, Paulo MarceloLebrecht, W.Ramirez Pastor, Antonio JoseNieto Quintas, Felix DanielPercolationPhase TransitionMonte Carlo SimulationPhase Diagramshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A generalization of the pure site and pure bond percolation problems called site–bond percolation on a triangular lattice is studied. Motivated by considerations of cluster connectivity, two distinct schemes (denoted as S∩B and S∪B) for site–bond percolation are used. In S∩B (S∪B), two points are said to be connected if a sequence of occupied sites and (or ) bonds joins them. By using finite-size scaling theory, data from S∩B and S∪B are analyzed in order to determine (i) the phase boundary between the percolating and non-percolating regions and (ii) the numerical values of the critical exponents of the phase transition occurring in the system. A theoretical approach, based on exact calculations of configurations on finite triangular cells, is applied to study the site–bond percolation on triangular lattices. The percolation processes have been monitored by following the percolation function, defined as the ratio between the number of percolating configurations and the total number of available configurations for a given cell size and concentration of occupied elements. A comparison of the results obtained by these two methods has been performed and discussed.Fil: Gonzalez Flores, Mariela Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina. Universidad de La Frontera. Departamento de Física; ChileFil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; ArgentinaFil: Lebrecht, W.. Universidad de La Frontera. Departamento de Física; ChileFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; ArgentinaFil: Nieto Quintas, Felix Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; ArgentinaElsevier2013-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5676Gonzalez Flores, Mariela Isabel; Centres, Paulo Marcelo; Lebrecht, W.; Ramirez Pastor, Antonio Jose; Nieto Quintas, Felix Daniel; Site-bond percolation on triangular lattices: Monte Carlo simulation and analytical approach; Elsevier; Physica A: Statistical Mechanics and its Applications; 392; 24; 12-2013; 6330-63400378-4371enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113008303info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2013.09.001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:30Zoai:ri.conicet.gov.ar:11336/5676instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:31.041CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Site-bond percolation on triangular lattices: Monte Carlo simulation and analytical approach |
title |
Site-bond percolation on triangular lattices: Monte Carlo simulation and analytical approach |
spellingShingle |
Site-bond percolation on triangular lattices: Monte Carlo simulation and analytical approach Gonzalez Flores, Mariela Isabel Percolation Phase Transition Monte Carlo Simulation Phase Diagrams |
title_short |
Site-bond percolation on triangular lattices: Monte Carlo simulation and analytical approach |
title_full |
Site-bond percolation on triangular lattices: Monte Carlo simulation and analytical approach |
title_fullStr |
Site-bond percolation on triangular lattices: Monte Carlo simulation and analytical approach |
title_full_unstemmed |
Site-bond percolation on triangular lattices: Monte Carlo simulation and analytical approach |
title_sort |
Site-bond percolation on triangular lattices: Monte Carlo simulation and analytical approach |
dc.creator.none.fl_str_mv |
Gonzalez Flores, Mariela Isabel Centres, Paulo Marcelo Lebrecht, W. Ramirez Pastor, Antonio Jose Nieto Quintas, Felix Daniel |
author |
Gonzalez Flores, Mariela Isabel |
author_facet |
Gonzalez Flores, Mariela Isabel Centres, Paulo Marcelo Lebrecht, W. Ramirez Pastor, Antonio Jose Nieto Quintas, Felix Daniel |
author_role |
author |
author2 |
Centres, Paulo Marcelo Lebrecht, W. Ramirez Pastor, Antonio Jose Nieto Quintas, Felix Daniel |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Percolation Phase Transition Monte Carlo Simulation Phase Diagrams |
topic |
Percolation Phase Transition Monte Carlo Simulation Phase Diagrams |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A generalization of the pure site and pure bond percolation problems called site–bond percolation on a triangular lattice is studied. Motivated by considerations of cluster connectivity, two distinct schemes (denoted as S∩B and S∪B) for site–bond percolation are used. In S∩B (S∪B), two points are said to be connected if a sequence of occupied sites and (or ) bonds joins them. By using finite-size scaling theory, data from S∩B and S∪B are analyzed in order to determine (i) the phase boundary between the percolating and non-percolating regions and (ii) the numerical values of the critical exponents of the phase transition occurring in the system. A theoretical approach, based on exact calculations of configurations on finite triangular cells, is applied to study the site–bond percolation on triangular lattices. The percolation processes have been monitored by following the percolation function, defined as the ratio between the number of percolating configurations and the total number of available configurations for a given cell size and concentration of occupied elements. A comparison of the results obtained by these two methods has been performed and discussed. Fil: Gonzalez Flores, Mariela Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina. Universidad de La Frontera. Departamento de Física; Chile Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina Fil: Lebrecht, W.. Universidad de La Frontera. Departamento de Física; Chile Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina Fil: Nieto Quintas, Felix Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina |
description |
A generalization of the pure site and pure bond percolation problems called site–bond percolation on a triangular lattice is studied. Motivated by considerations of cluster connectivity, two distinct schemes (denoted as S∩B and S∪B) for site–bond percolation are used. In S∩B (S∪B), two points are said to be connected if a sequence of occupied sites and (or ) bonds joins them. By using finite-size scaling theory, data from S∩B and S∪B are analyzed in order to determine (i) the phase boundary between the percolating and non-percolating regions and (ii) the numerical values of the critical exponents of the phase transition occurring in the system. A theoretical approach, based on exact calculations of configurations on finite triangular cells, is applied to study the site–bond percolation on triangular lattices. The percolation processes have been monitored by following the percolation function, defined as the ratio between the number of percolating configurations and the total number of available configurations for a given cell size and concentration of occupied elements. A comparison of the results obtained by these two methods has been performed and discussed. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/5676 Gonzalez Flores, Mariela Isabel; Centres, Paulo Marcelo; Lebrecht, W.; Ramirez Pastor, Antonio Jose; Nieto Quintas, Felix Daniel; Site-bond percolation on triangular lattices: Monte Carlo simulation and analytical approach; Elsevier; Physica A: Statistical Mechanics and its Applications; 392; 24; 12-2013; 6330-6340 0378-4371 |
url |
http://hdl.handle.net/11336/5676 |
identifier_str_mv |
Gonzalez Flores, Mariela Isabel; Centres, Paulo Marcelo; Lebrecht, W.; Ramirez Pastor, Antonio Jose; Nieto Quintas, Felix Daniel; Site-bond percolation on triangular lattices: Monte Carlo simulation and analytical approach; Elsevier; Physica A: Statistical Mechanics and its Applications; 392; 24; 12-2013; 6330-6340 0378-4371 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113008303 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2013.09.001 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268863857688576 |
score |
13.13397 |