Site-bond percolation on triangular lattices: Monte Carlo simulation and analytical approach

Autores
Gonzalez Flores, Mariela Isabel; Centres, Paulo Marcelo; Lebrecht, W.; Ramirez Pastor, Antonio Jose; Nieto Quintas, Felix Daniel
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A generalization of the pure site and pure bond percolation problems called site–bond percolation on a triangular lattice is studied. Motivated by considerations of cluster connectivity, two distinct schemes (denoted as S∩B and S∪B) for site–bond percolation are used. In S∩B (S∪B), two points are said to be connected if a sequence of occupied sites and (or ) bonds joins them. By using finite-size scaling theory, data from S∩B and S∪B are analyzed in order to determine (i) the phase boundary between the percolating and non-percolating regions and (ii) the numerical values of the critical exponents of the phase transition occurring in the system. A theoretical approach, based on exact calculations of configurations on finite triangular cells, is applied to study the site–bond percolation on triangular lattices. The percolation processes have been monitored by following the percolation function, defined as the ratio between the number of percolating configurations and the total number of available configurations for a given cell size and concentration of occupied elements. A comparison of the results obtained by these two methods has been performed and discussed.
Fil: Gonzalez Flores, Mariela Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina. Universidad de La Frontera. Departamento de Física; Chile
Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina
Fil: Lebrecht, W.. Universidad de La Frontera. Departamento de Física; Chile
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina
Fil: Nieto Quintas, Felix Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina
Materia
Percolation
Phase Transition
Monte Carlo Simulation
Phase Diagrams
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/5676

id CONICETDig_56a39e18eff89ce064e8c979363d576c
oai_identifier_str oai:ri.conicet.gov.ar:11336/5676
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Site-bond percolation on triangular lattices: Monte Carlo simulation and analytical approachGonzalez Flores, Mariela IsabelCentres, Paulo MarceloLebrecht, W.Ramirez Pastor, Antonio JoseNieto Quintas, Felix DanielPercolationPhase TransitionMonte Carlo SimulationPhase Diagramshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A generalization of the pure site and pure bond percolation problems called site–bond percolation on a triangular lattice is studied. Motivated by considerations of cluster connectivity, two distinct schemes (denoted as S∩B and S∪B) for site–bond percolation are used. In S∩B (S∪B), two points are said to be connected if a sequence of occupied sites and (or ) bonds joins them. By using finite-size scaling theory, data from S∩B and S∪B are analyzed in order to determine (i) the phase boundary between the percolating and non-percolating regions and (ii) the numerical values of the critical exponents of the phase transition occurring in the system. A theoretical approach, based on exact calculations of configurations on finite triangular cells, is applied to study the site–bond percolation on triangular lattices. The percolation processes have been monitored by following the percolation function, defined as the ratio between the number of percolating configurations and the total number of available configurations for a given cell size and concentration of occupied elements. A comparison of the results obtained by these two methods has been performed and discussed.Fil: Gonzalez Flores, Mariela Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina. Universidad de La Frontera. Departamento de Física; ChileFil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; ArgentinaFil: Lebrecht, W.. Universidad de La Frontera. Departamento de Física; ChileFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; ArgentinaFil: Nieto Quintas, Felix Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; ArgentinaElsevier2013-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5676Gonzalez Flores, Mariela Isabel; Centres, Paulo Marcelo; Lebrecht, W.; Ramirez Pastor, Antonio Jose; Nieto Quintas, Felix Daniel; Site-bond percolation on triangular lattices: Monte Carlo simulation and analytical approach; Elsevier; Physica A: Statistical Mechanics and its Applications; 392; 24; 12-2013; 6330-63400378-4371enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113008303info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2013.09.001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:30Zoai:ri.conicet.gov.ar:11336/5676instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:31.041CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Site-bond percolation on triangular lattices: Monte Carlo simulation and analytical approach
title Site-bond percolation on triangular lattices: Monte Carlo simulation and analytical approach
spellingShingle Site-bond percolation on triangular lattices: Monte Carlo simulation and analytical approach
Gonzalez Flores, Mariela Isabel
Percolation
Phase Transition
Monte Carlo Simulation
Phase Diagrams
title_short Site-bond percolation on triangular lattices: Monte Carlo simulation and analytical approach
title_full Site-bond percolation on triangular lattices: Monte Carlo simulation and analytical approach
title_fullStr Site-bond percolation on triangular lattices: Monte Carlo simulation and analytical approach
title_full_unstemmed Site-bond percolation on triangular lattices: Monte Carlo simulation and analytical approach
title_sort Site-bond percolation on triangular lattices: Monte Carlo simulation and analytical approach
dc.creator.none.fl_str_mv Gonzalez Flores, Mariela Isabel
Centres, Paulo Marcelo
Lebrecht, W.
Ramirez Pastor, Antonio Jose
Nieto Quintas, Felix Daniel
author Gonzalez Flores, Mariela Isabel
author_facet Gonzalez Flores, Mariela Isabel
Centres, Paulo Marcelo
Lebrecht, W.
Ramirez Pastor, Antonio Jose
Nieto Quintas, Felix Daniel
author_role author
author2 Centres, Paulo Marcelo
Lebrecht, W.
Ramirez Pastor, Antonio Jose
Nieto Quintas, Felix Daniel
author2_role author
author
author
author
dc.subject.none.fl_str_mv Percolation
Phase Transition
Monte Carlo Simulation
Phase Diagrams
topic Percolation
Phase Transition
Monte Carlo Simulation
Phase Diagrams
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A generalization of the pure site and pure bond percolation problems called site–bond percolation on a triangular lattice is studied. Motivated by considerations of cluster connectivity, two distinct schemes (denoted as S∩B and S∪B) for site–bond percolation are used. In S∩B (S∪B), two points are said to be connected if a sequence of occupied sites and (or ) bonds joins them. By using finite-size scaling theory, data from S∩B and S∪B are analyzed in order to determine (i) the phase boundary between the percolating and non-percolating regions and (ii) the numerical values of the critical exponents of the phase transition occurring in the system. A theoretical approach, based on exact calculations of configurations on finite triangular cells, is applied to study the site–bond percolation on triangular lattices. The percolation processes have been monitored by following the percolation function, defined as the ratio between the number of percolating configurations and the total number of available configurations for a given cell size and concentration of occupied elements. A comparison of the results obtained by these two methods has been performed and discussed.
Fil: Gonzalez Flores, Mariela Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina. Universidad de La Frontera. Departamento de Física; Chile
Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina
Fil: Lebrecht, W.. Universidad de La Frontera. Departamento de Física; Chile
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina
Fil: Nieto Quintas, Felix Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina
description A generalization of the pure site and pure bond percolation problems called site–bond percolation on a triangular lattice is studied. Motivated by considerations of cluster connectivity, two distinct schemes (denoted as S∩B and S∪B) for site–bond percolation are used. In S∩B (S∪B), two points are said to be connected if a sequence of occupied sites and (or ) bonds joins them. By using finite-size scaling theory, data from S∩B and S∪B are analyzed in order to determine (i) the phase boundary between the percolating and non-percolating regions and (ii) the numerical values of the critical exponents of the phase transition occurring in the system. A theoretical approach, based on exact calculations of configurations on finite triangular cells, is applied to study the site–bond percolation on triangular lattices. The percolation processes have been monitored by following the percolation function, defined as the ratio between the number of percolating configurations and the total number of available configurations for a given cell size and concentration of occupied elements. A comparison of the results obtained by these two methods has been performed and discussed.
publishDate 2013
dc.date.none.fl_str_mv 2013-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/5676
Gonzalez Flores, Mariela Isabel; Centres, Paulo Marcelo; Lebrecht, W.; Ramirez Pastor, Antonio Jose; Nieto Quintas, Felix Daniel; Site-bond percolation on triangular lattices: Monte Carlo simulation and analytical approach; Elsevier; Physica A: Statistical Mechanics and its Applications; 392; 24; 12-2013; 6330-6340
0378-4371
url http://hdl.handle.net/11336/5676
identifier_str_mv Gonzalez Flores, Mariela Isabel; Centres, Paulo Marcelo; Lebrecht, W.; Ramirez Pastor, Antonio Jose; Nieto Quintas, Felix Daniel; Site-bond percolation on triangular lattices: Monte Carlo simulation and analytical approach; Elsevier; Physica A: Statistical Mechanics and its Applications; 392; 24; 12-2013; 6330-6340
0378-4371
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113008303
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2013.09.001
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268863857688576
score 13.13397