Percolation of aligned rigid rods on two-dimensional triangular lattices
- Autores
- Longone, Pablo Jesus; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The percolation behavior of aligned rigid rods of length k ( k -mers) on two-dimensional triangular lattices has been studied by numerical simulations and finite-size scaling analysis. The k -mers, containing k identical units (each one occupying a lattice site), were irreversibly deposited along one of the directions of the lattice. The connectivity analysis was carried out by following the probability R L , k ( p ) that a lattice composed of L × L sites percolates at a concentration p of sites occupied by particles of size k . The results, obtained for k ranging from 2 to 80, showed that the percolation threshold p c ( k ) exhibits a increasing function when it is plotted as a function of the k -mer size. The dependence of p c ( k ) was determined, being p c ( k ) = A + B / ( C + √ k ) , where A = p c ( k → ∞ ) = 0.582 ( 9 ) is the value of the percolation threshold by infinitely long k -mers, B = − 0.47 ( 0.21 ) , and C = 5.79 ( 2.18 ) . This behavior is completely different from that observed for square lattices, where the percolation threshold decreases with k . In addition, the effect of the anisotropy on the properties of the percolating phase was investigated. The results revealed that, while for finite systems the anisotropy of the deposited layer favors the percolation along the parallel direction to the alignment axis, in the thermodynamic limit, the value of the percolation threshold is the same in both parallel and transversal directions. Finally, an exhaustive study of critical exponents and universality was carried out, showing that the phase transition occurring in the system belongs to the standard random percolation universality class regardless of the value of k considered.
Fil: Longone, Pablo Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina - Materia
-
PERCOLATION
NEMATIC
JAMMING
PHASE TRANSITION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/118779
Ver los metadatos del registro completo
id |
CONICETDig_1f8d0d1340318b31532531ec09bf8e72 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/118779 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Percolation of aligned rigid rods on two-dimensional triangular latticesLongone, Pablo JesusCentres, Paulo MarceloRamirez Pastor, Antonio JosePERCOLATIONNEMATICJAMMINGPHASE TRANSITIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The percolation behavior of aligned rigid rods of length k ( k -mers) on two-dimensional triangular lattices has been studied by numerical simulations and finite-size scaling analysis. The k -mers, containing k identical units (each one occupying a lattice site), were irreversibly deposited along one of the directions of the lattice. The connectivity analysis was carried out by following the probability R L , k ( p ) that a lattice composed of L × L sites percolates at a concentration p of sites occupied by particles of size k . The results, obtained for k ranging from 2 to 80, showed that the percolation threshold p c ( k ) exhibits a increasing function when it is plotted as a function of the k -mer size. The dependence of p c ( k ) was determined, being p c ( k ) = A + B / ( C + √ k ) , where A = p c ( k → ∞ ) = 0.582 ( 9 ) is the value of the percolation threshold by infinitely long k -mers, B = − 0.47 ( 0.21 ) , and C = 5.79 ( 2.18 ) . This behavior is completely different from that observed for square lattices, where the percolation threshold decreases with k . In addition, the effect of the anisotropy on the properties of the percolating phase was investigated. The results revealed that, while for finite systems the anisotropy of the deposited layer favors the percolation along the parallel direction to the alignment axis, in the thermodynamic limit, the value of the percolation threshold is the same in both parallel and transversal directions. Finally, an exhaustive study of critical exponents and universality was carried out, showing that the phase transition occurring in the system belongs to the standard random percolation universality class regardless of the value of k considered.Fil: Longone, Pablo Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaAmerican Physical Society2019-11-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/118779Longone, Pablo Jesus; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Percolation of aligned rigid rods on two-dimensional triangular lattices; American Physical Society; Physical Review. E; 100; 5; 4-11-2019; 1-11; 0521042470-00452470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.100.052104info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.100.052104info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:37Zoai:ri.conicet.gov.ar:11336/118779instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:37.649CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Percolation of aligned rigid rods on two-dimensional triangular lattices |
title |
Percolation of aligned rigid rods on two-dimensional triangular lattices |
spellingShingle |
Percolation of aligned rigid rods on two-dimensional triangular lattices Longone, Pablo Jesus PERCOLATION NEMATIC JAMMING PHASE TRANSITION |
title_short |
Percolation of aligned rigid rods on two-dimensional triangular lattices |
title_full |
Percolation of aligned rigid rods on two-dimensional triangular lattices |
title_fullStr |
Percolation of aligned rigid rods on two-dimensional triangular lattices |
title_full_unstemmed |
Percolation of aligned rigid rods on two-dimensional triangular lattices |
title_sort |
Percolation of aligned rigid rods on two-dimensional triangular lattices |
dc.creator.none.fl_str_mv |
Longone, Pablo Jesus Centres, Paulo Marcelo Ramirez Pastor, Antonio Jose |
author |
Longone, Pablo Jesus |
author_facet |
Longone, Pablo Jesus Centres, Paulo Marcelo Ramirez Pastor, Antonio Jose |
author_role |
author |
author2 |
Centres, Paulo Marcelo Ramirez Pastor, Antonio Jose |
author2_role |
author author |
dc.subject.none.fl_str_mv |
PERCOLATION NEMATIC JAMMING PHASE TRANSITION |
topic |
PERCOLATION NEMATIC JAMMING PHASE TRANSITION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The percolation behavior of aligned rigid rods of length k ( k -mers) on two-dimensional triangular lattices has been studied by numerical simulations and finite-size scaling analysis. The k -mers, containing k identical units (each one occupying a lattice site), were irreversibly deposited along one of the directions of the lattice. The connectivity analysis was carried out by following the probability R L , k ( p ) that a lattice composed of L × L sites percolates at a concentration p of sites occupied by particles of size k . The results, obtained for k ranging from 2 to 80, showed that the percolation threshold p c ( k ) exhibits a increasing function when it is plotted as a function of the k -mer size. The dependence of p c ( k ) was determined, being p c ( k ) = A + B / ( C + √ k ) , where A = p c ( k → ∞ ) = 0.582 ( 9 ) is the value of the percolation threshold by infinitely long k -mers, B = − 0.47 ( 0.21 ) , and C = 5.79 ( 2.18 ) . This behavior is completely different from that observed for square lattices, where the percolation threshold decreases with k . In addition, the effect of the anisotropy on the properties of the percolating phase was investigated. The results revealed that, while for finite systems the anisotropy of the deposited layer favors the percolation along the parallel direction to the alignment axis, in the thermodynamic limit, the value of the percolation threshold is the same in both parallel and transversal directions. Finally, an exhaustive study of critical exponents and universality was carried out, showing that the phase transition occurring in the system belongs to the standard random percolation universality class regardless of the value of k considered. Fil: Longone, Pablo Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina |
description |
The percolation behavior of aligned rigid rods of length k ( k -mers) on two-dimensional triangular lattices has been studied by numerical simulations and finite-size scaling analysis. The k -mers, containing k identical units (each one occupying a lattice site), were irreversibly deposited along one of the directions of the lattice. The connectivity analysis was carried out by following the probability R L , k ( p ) that a lattice composed of L × L sites percolates at a concentration p of sites occupied by particles of size k . The results, obtained for k ranging from 2 to 80, showed that the percolation threshold p c ( k ) exhibits a increasing function when it is plotted as a function of the k -mer size. The dependence of p c ( k ) was determined, being p c ( k ) = A + B / ( C + √ k ) , where A = p c ( k → ∞ ) = 0.582 ( 9 ) is the value of the percolation threshold by infinitely long k -mers, B = − 0.47 ( 0.21 ) , and C = 5.79 ( 2.18 ) . This behavior is completely different from that observed for square lattices, where the percolation threshold decreases with k . In addition, the effect of the anisotropy on the properties of the percolating phase was investigated. The results revealed that, while for finite systems the anisotropy of the deposited layer favors the percolation along the parallel direction to the alignment axis, in the thermodynamic limit, the value of the percolation threshold is the same in both parallel and transversal directions. Finally, an exhaustive study of critical exponents and universality was carried out, showing that the phase transition occurring in the system belongs to the standard random percolation universality class regardless of the value of k considered. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/118779 Longone, Pablo Jesus; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Percolation of aligned rigid rods on two-dimensional triangular lattices; American Physical Society; Physical Review. E; 100; 5; 4-11-2019; 1-11; 052104 2470-0045 2470-0053 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/118779 |
identifier_str_mv |
Longone, Pablo Jesus; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Percolation of aligned rigid rods on two-dimensional triangular lattices; American Physical Society; Physical Review. E; 100; 5; 4-11-2019; 1-11; 052104 2470-0045 2470-0053 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.100.052104 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.100.052104 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613034131062784 |
score |
13.070432 |