On the mean and variance of the generalized inverse of a singular wishart matrix
- Autores
- Cook, R. Dennis; Forzani, Liliana Maria
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We derive the first and the second moments of the Moore- Penrose generalized inverse of a singular standard Wishart matrix without relying on a density. Instead, we use the moments of an inverse Wishart distribution and an invariance argument which is related to the literature on tensor functions. We also find the order of the spectral norm of the generalized inverse of a Wishart matrix as its dimension and degrees of freedom diverge.
Fil: Cook, R. Dennis. University of Minnesota; Estados Unidos
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
Inverse Wishart Distribution
Moore-Penrose Generalized Inverse
Singular Inversewishart Distributions
Tensor Functions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/75177
Ver los metadatos del registro completo
id |
CONICETDig_5b8443c31e7851c5bdcc13973ebf98f2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/75177 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the mean and variance of the generalized inverse of a singular wishart matrixCook, R. DennisForzani, Liliana MariaInverse Wishart DistributionMoore-Penrose Generalized InverseSingular Inversewishart DistributionsTensor Functionshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We derive the first and the second moments of the Moore- Penrose generalized inverse of a singular standard Wishart matrix without relying on a density. Instead, we use the moments of an inverse Wishart distribution and an invariance argument which is related to the literature on tensor functions. We also find the order of the spectral norm of the generalized inverse of a Wishart matrix as its dimension and degrees of freedom diverge.Fil: Cook, R. Dennis. University of Minnesota; Estados UnidosFil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaInstitute of Mathematical Statistics2011-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/75177Cook, R. Dennis; Forzani, Liliana Maria; On the mean and variance of the generalized inverse of a singular wishart matrix; Institute of Mathematical Statistics; Electronic Journal of Statistics; 5; 1-2011; 146-1581935-7524CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?handle=euclid.ejs/1300198786&view=body&content-type=pdfview_1info:eu-repo/semantics/altIdentifier/doi/10.1214/11-EJS602info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:56:00Zoai:ri.conicet.gov.ar:11336/75177instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:56:00.921CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the mean and variance of the generalized inverse of a singular wishart matrix |
title |
On the mean and variance of the generalized inverse of a singular wishart matrix |
spellingShingle |
On the mean and variance of the generalized inverse of a singular wishart matrix Cook, R. Dennis Inverse Wishart Distribution Moore-Penrose Generalized Inverse Singular Inversewishart Distributions Tensor Functions |
title_short |
On the mean and variance of the generalized inverse of a singular wishart matrix |
title_full |
On the mean and variance of the generalized inverse of a singular wishart matrix |
title_fullStr |
On the mean and variance of the generalized inverse of a singular wishart matrix |
title_full_unstemmed |
On the mean and variance of the generalized inverse of a singular wishart matrix |
title_sort |
On the mean and variance of the generalized inverse of a singular wishart matrix |
dc.creator.none.fl_str_mv |
Cook, R. Dennis Forzani, Liliana Maria |
author |
Cook, R. Dennis |
author_facet |
Cook, R. Dennis Forzani, Liliana Maria |
author_role |
author |
author2 |
Forzani, Liliana Maria |
author2_role |
author |
dc.subject.none.fl_str_mv |
Inverse Wishart Distribution Moore-Penrose Generalized Inverse Singular Inversewishart Distributions Tensor Functions |
topic |
Inverse Wishart Distribution Moore-Penrose Generalized Inverse Singular Inversewishart Distributions Tensor Functions |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We derive the first and the second moments of the Moore- Penrose generalized inverse of a singular standard Wishart matrix without relying on a density. Instead, we use the moments of an inverse Wishart distribution and an invariance argument which is related to the literature on tensor functions. We also find the order of the spectral norm of the generalized inverse of a Wishart matrix as its dimension and degrees of freedom diverge. Fil: Cook, R. Dennis. University of Minnesota; Estados Unidos Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
description |
We derive the first and the second moments of the Moore- Penrose generalized inverse of a singular standard Wishart matrix without relying on a density. Instead, we use the moments of an inverse Wishart distribution and an invariance argument which is related to the literature on tensor functions. We also find the order of the spectral norm of the generalized inverse of a Wishart matrix as its dimension and degrees of freedom diverge. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/75177 Cook, R. Dennis; Forzani, Liliana Maria; On the mean and variance of the generalized inverse of a singular wishart matrix; Institute of Mathematical Statistics; Electronic Journal of Statistics; 5; 1-2011; 146-158 1935-7524 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/75177 |
identifier_str_mv |
Cook, R. Dennis; Forzani, Liliana Maria; On the mean and variance of the generalized inverse of a singular wishart matrix; Institute of Mathematical Statistics; Electronic Journal of Statistics; 5; 1-2011; 146-158 1935-7524 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?handle=euclid.ejs/1300198786&view=body&content-type=pdfview_1 info:eu-repo/semantics/altIdentifier/doi/10.1214/11-EJS602 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Mathematical Statistics |
publisher.none.fl_str_mv |
Institute of Mathematical Statistics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613685528494080 |
score |
13.070432 |