Revisiting the core EP inverse and its extension to rectangular matrices

Autores
Ferreyra, David Eduardo; Levis, Fabián Eduardo; Thome Coppo, Néstor Javier
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, we revise the core EP inverse of a square matrix introduced by Prasad and Mohana in [12], Core EP inverse, Linear and Multilinear Algebra62(3) (2014), 792–802. Firstly, we give a new representation and a new characterization of the core EP inverse. Then, we study some properties of the core EP inverse by using a representation by block matrices. Secondly, we extend the notion of core EP inverse to rectangular matrices by means of a weighted core EP decomposition. Finally, we study some properties of weighted core EP inverses.
Fil: Ferreyra, David Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Levis, Fabián Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Fil: Thome Coppo, Néstor Javier. Universidad Politécnica de Valencia; España
Materia
Core Ep Inverse
Core Inverse
Dmp Generalized Inverse
Generalized Core Inverse
Generalized Inverses
Moore-Penrose Inverse
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/76396

id CONICETDig_182846325d28f1a1fa4120bb9586bc18
oai_identifier_str oai:ri.conicet.gov.ar:11336/76396
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Revisiting the core EP inverse and its extension to rectangular matricesFerreyra, David EduardoLevis, Fabián EduardoThome Coppo, Néstor JavierCore Ep InverseCore InverseDmp Generalized InverseGeneralized Core InverseGeneralized InversesMoore-Penrose Inversehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we revise the core EP inverse of a square matrix introduced by Prasad and Mohana in [12], Core EP inverse, Linear and Multilinear Algebra62(3) (2014), 792–802. Firstly, we give a new representation and a new characterization of the core EP inverse. Then, we study some properties of the core EP inverse by using a representation by block matrices. Secondly, we extend the notion of core EP inverse to rectangular matrices by means of a weighted core EP decomposition. Finally, we study some properties of weighted core EP inverses.Fil: Ferreyra, David Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Levis, Fabián Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; ArgentinaFil: Thome Coppo, Néstor Javier. Universidad Politécnica de Valencia; EspañaNatl Inquiry Services Centre Pty Ltd2018-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/76396Ferreyra, David Eduardo; Levis, Fabián Eduardo; Thome Coppo, Néstor Javier; Revisiting the core EP inverse and its extension to rectangular matrices; Natl Inquiry Services Centre Pty Ltd; Quaestiones Mathematicae; 41; 2; 2-2018; 265-2811607-36061727-933XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2989/16073606.2017.1377779info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.2989/16073606.2017.1377779info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:32:04Zoai:ri.conicet.gov.ar:11336/76396instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:32:04.497CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Revisiting the core EP inverse and its extension to rectangular matrices
title Revisiting the core EP inverse and its extension to rectangular matrices
spellingShingle Revisiting the core EP inverse and its extension to rectangular matrices
Ferreyra, David Eduardo
Core Ep Inverse
Core Inverse
Dmp Generalized Inverse
Generalized Core Inverse
Generalized Inverses
Moore-Penrose Inverse
title_short Revisiting the core EP inverse and its extension to rectangular matrices
title_full Revisiting the core EP inverse and its extension to rectangular matrices
title_fullStr Revisiting the core EP inverse and its extension to rectangular matrices
title_full_unstemmed Revisiting the core EP inverse and its extension to rectangular matrices
title_sort Revisiting the core EP inverse and its extension to rectangular matrices
dc.creator.none.fl_str_mv Ferreyra, David Eduardo
Levis, Fabián Eduardo
Thome Coppo, Néstor Javier
author Ferreyra, David Eduardo
author_facet Ferreyra, David Eduardo
Levis, Fabián Eduardo
Thome Coppo, Néstor Javier
author_role author
author2 Levis, Fabián Eduardo
Thome Coppo, Néstor Javier
author2_role author
author
dc.subject.none.fl_str_mv Core Ep Inverse
Core Inverse
Dmp Generalized Inverse
Generalized Core Inverse
Generalized Inverses
Moore-Penrose Inverse
topic Core Ep Inverse
Core Inverse
Dmp Generalized Inverse
Generalized Core Inverse
Generalized Inverses
Moore-Penrose Inverse
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper, we revise the core EP inverse of a square matrix introduced by Prasad and Mohana in [12], Core EP inverse, Linear and Multilinear Algebra62(3) (2014), 792–802. Firstly, we give a new representation and a new characterization of the core EP inverse. Then, we study some properties of the core EP inverse by using a representation by block matrices. Secondly, we extend the notion of core EP inverse to rectangular matrices by means of a weighted core EP decomposition. Finally, we study some properties of weighted core EP inverses.
Fil: Ferreyra, David Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Levis, Fabián Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Fil: Thome Coppo, Néstor Javier. Universidad Politécnica de Valencia; España
description In this paper, we revise the core EP inverse of a square matrix introduced by Prasad and Mohana in [12], Core EP inverse, Linear and Multilinear Algebra62(3) (2014), 792–802. Firstly, we give a new representation and a new characterization of the core EP inverse. Then, we study some properties of the core EP inverse by using a representation by block matrices. Secondly, we extend the notion of core EP inverse to rectangular matrices by means of a weighted core EP decomposition. Finally, we study some properties of weighted core EP inverses.
publishDate 2018
dc.date.none.fl_str_mv 2018-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/76396
Ferreyra, David Eduardo; Levis, Fabián Eduardo; Thome Coppo, Néstor Javier; Revisiting the core EP inverse and its extension to rectangular matrices; Natl Inquiry Services Centre Pty Ltd; Quaestiones Mathematicae; 41; 2; 2-2018; 265-281
1607-3606
1727-933X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/76396
identifier_str_mv Ferreyra, David Eduardo; Levis, Fabián Eduardo; Thome Coppo, Néstor Javier; Revisiting the core EP inverse and its extension to rectangular matrices; Natl Inquiry Services Centre Pty Ltd; Quaestiones Mathematicae; 41; 2; 2-2018; 265-281
1607-3606
1727-933X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.2989/16073606.2017.1377779
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.2989/16073606.2017.1377779
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Natl Inquiry Services Centre Pty Ltd
publisher.none.fl_str_mv Natl Inquiry Services Centre Pty Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082807993991168
score 13.22299