Sobre la no convergencia del método de mínimos cuadrados en dimensión infinita
- Autores
- Spies, Ruben Daniel; Temperini, Karina Guadalupe
- Año de publicación
- 2007
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Un procedimiento muy utilizado en diversas aplicaciones para aproximarlas soluciones de un problema inverso infinito-dimensional de la formaAx=b, dondeAes un operador lineal y compacto sobre un cierto espacio de HilbertXybes eldato dado, consiste en encontrar una sucesi ́on{XN}de subespacios aproximantes finito-dimensionales deXcuya uni ́on es densa enXy construir la sucesi ́on{xN}de solucionesde m ́ınimos cuadrados del problema en cada subespacioXN. En [3], Seidman demostr ́oque si el problema es mal condicionado, entonces sin ninguna hip ́otesis adicional sobrela soluci ́on exacta o sobre la sucesi ́on de subespacios aproximantes{XN}, no se puedegarantizar que la sucesi ́on{xN}converger ́a a la soluci ́on exacta. En este art ́ıculo seextiende este resultado: se prueba que siXes separable, entonces para cualquierb∈X,b6= 0, y para cualquier funci ́on no negativa definida sobre los naturalesf: IN→IR+,existe un operador lineal, compacto e inyectivoAy una sucesi ́on creciente de subespaciosfinito-dimensionalesXN⊂Xtales que∥∥xN−A−1b∥∥≥f(N) para todoN∈IN, dondexNes la soluci ́on de m ́ınimos cuadrados del problemaAx=benXN.
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Temperini, Karina Guadalupe. Universidad Nacional del Litoral; Argentina - Materia
-
Mínimos Cuadrados
Espacios de Hilbert
Inversa Generalizada de Moore-Penrose - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84068
Ver los metadatos del registro completo
id |
CONICETDig_3059e1072fcdfd88373fb0110e67f23a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84068 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Sobre la no convergencia del método de mínimos cuadrados en dimensión infinitaSpies, Ruben DanielTemperini, Karina GuadalupeMínimos CuadradosEspacios de HilbertInversa Generalizada de Moore-Penrosehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Un procedimiento muy utilizado en diversas aplicaciones para aproximarlas soluciones de un problema inverso infinito-dimensional de la formaAx=b, dondeAes un operador lineal y compacto sobre un cierto espacio de HilbertXybes eldato dado, consiste en encontrar una sucesi ́on{XN}de subespacios aproximantes finito-dimensionales deXcuya uni ́on es densa enXy construir la sucesi ́on{xN}de solucionesde m ́ınimos cuadrados del problema en cada subespacioXN. En [3], Seidman demostr ́oque si el problema es mal condicionado, entonces sin ninguna hip ́otesis adicional sobrela soluci ́on exacta o sobre la sucesi ́on de subespacios aproximantes{XN}, no se puedegarantizar que la sucesi ́on{xN}converger ́a a la soluci ́on exacta. En este art ́ıculo seextiende este resultado: se prueba que siXes separable, entonces para cualquierb∈X,b6= 0, y para cualquier funci ́on no negativa definida sobre los naturalesf: IN→IR+,existe un operador lineal, compacto e inyectivoAy una sucesi ́on creciente de subespaciosfinito-dimensionalesXN⊂Xtales que∥∥xN−A−1b∥∥≥f(N) para todoN∈IN, dondexNes la soluci ́on de m ́ınimos cuadrados del problemaAx=benXN.Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Temperini, Karina Guadalupe. Universidad Nacional del Litoral; ArgentinaFac. de Ciencias Empresariales, Universidad Austral2007-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84068Spies, Ruben Daniel; Temperini, Karina Guadalupe; Sobre la no convergencia del método de mínimos cuadrados en dimensión infinita; Fac. de Ciencias Empresariales, Universidad Austral; Revista MAT Serie A; 14; 3-2007; 31-341515-4904CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://web.austral.edu.ar/descargas/facultad-cienciasEmpresariales/mat/Spies-Temperini-MAT-SerieA-14(2007)31-34.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:29:00Zoai:ri.conicet.gov.ar:11336/84068instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:29:01.035CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Sobre la no convergencia del método de mínimos cuadrados en dimensión infinita |
title |
Sobre la no convergencia del método de mínimos cuadrados en dimensión infinita |
spellingShingle |
Sobre la no convergencia del método de mínimos cuadrados en dimensión infinita Spies, Ruben Daniel Mínimos Cuadrados Espacios de Hilbert Inversa Generalizada de Moore-Penrose |
title_short |
Sobre la no convergencia del método de mínimos cuadrados en dimensión infinita |
title_full |
Sobre la no convergencia del método de mínimos cuadrados en dimensión infinita |
title_fullStr |
Sobre la no convergencia del método de mínimos cuadrados en dimensión infinita |
title_full_unstemmed |
Sobre la no convergencia del método de mínimos cuadrados en dimensión infinita |
title_sort |
Sobre la no convergencia del método de mínimos cuadrados en dimensión infinita |
dc.creator.none.fl_str_mv |
Spies, Ruben Daniel Temperini, Karina Guadalupe |
author |
Spies, Ruben Daniel |
author_facet |
Spies, Ruben Daniel Temperini, Karina Guadalupe |
author_role |
author |
author2 |
Temperini, Karina Guadalupe |
author2_role |
author |
dc.subject.none.fl_str_mv |
Mínimos Cuadrados Espacios de Hilbert Inversa Generalizada de Moore-Penrose |
topic |
Mínimos Cuadrados Espacios de Hilbert Inversa Generalizada de Moore-Penrose |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Un procedimiento muy utilizado en diversas aplicaciones para aproximarlas soluciones de un problema inverso infinito-dimensional de la formaAx=b, dondeAes un operador lineal y compacto sobre un cierto espacio de HilbertXybes eldato dado, consiste en encontrar una sucesi ́on{XN}de subespacios aproximantes finito-dimensionales deXcuya uni ́on es densa enXy construir la sucesi ́on{xN}de solucionesde m ́ınimos cuadrados del problema en cada subespacioXN. En [3], Seidman demostr ́oque si el problema es mal condicionado, entonces sin ninguna hip ́otesis adicional sobrela soluci ́on exacta o sobre la sucesi ́on de subespacios aproximantes{XN}, no se puedegarantizar que la sucesi ́on{xN}converger ́a a la soluci ́on exacta. En este art ́ıculo seextiende este resultado: se prueba que siXes separable, entonces para cualquierb∈X,b6= 0, y para cualquier funci ́on no negativa definida sobre los naturalesf: IN→IR+,existe un operador lineal, compacto e inyectivoAy una sucesi ́on creciente de subespaciosfinito-dimensionalesXN⊂Xtales que∥∥xN−A−1b∥∥≥f(N) para todoN∈IN, dondexNes la soluci ́on de m ́ınimos cuadrados del problemaAx=benXN. Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Temperini, Karina Guadalupe. Universidad Nacional del Litoral; Argentina |
description |
Un procedimiento muy utilizado en diversas aplicaciones para aproximarlas soluciones de un problema inverso infinito-dimensional de la formaAx=b, dondeAes un operador lineal y compacto sobre un cierto espacio de HilbertXybes eldato dado, consiste en encontrar una sucesi ́on{XN}de subespacios aproximantes finito-dimensionales deXcuya uni ́on es densa enXy construir la sucesi ́on{xN}de solucionesde m ́ınimos cuadrados del problema en cada subespacioXN. En [3], Seidman demostr ́oque si el problema es mal condicionado, entonces sin ninguna hip ́otesis adicional sobrela soluci ́on exacta o sobre la sucesi ́on de subespacios aproximantes{XN}, no se puedegarantizar que la sucesi ́on{xN}converger ́a a la soluci ́on exacta. En este art ́ıculo seextiende este resultado: se prueba que siXes separable, entonces para cualquierb∈X,b6= 0, y para cualquier funci ́on no negativa definida sobre los naturalesf: IN→IR+,existe un operador lineal, compacto e inyectivoAy una sucesi ́on creciente de subespaciosfinito-dimensionalesXN⊂Xtales que∥∥xN−A−1b∥∥≥f(N) para todoN∈IN, dondexNes la soluci ́on de m ́ınimos cuadrados del problemaAx=benXN. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84068 Spies, Ruben Daniel; Temperini, Karina Guadalupe; Sobre la no convergencia del método de mínimos cuadrados en dimensión infinita; Fac. de Ciencias Empresariales, Universidad Austral; Revista MAT Serie A; 14; 3-2007; 31-34 1515-4904 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/84068 |
identifier_str_mv |
Spies, Ruben Daniel; Temperini, Karina Guadalupe; Sobre la no convergencia del método de mínimos cuadrados en dimensión infinita; Fac. de Ciencias Empresariales, Universidad Austral; Revista MAT Serie A; 14; 3-2007; 31-34 1515-4904 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://web.austral.edu.ar/descargas/facultad-cienciasEmpresariales/mat/Spies-Temperini-MAT-SerieA-14(2007)31-34.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Fac. de Ciencias Empresariales, Universidad Austral |
publisher.none.fl_str_mv |
Fac. de Ciencias Empresariales, Universidad Austral |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614295160094720 |
score |
13.070432 |